Physical scales in the Wigner-Boltzmann equation

被引:23
|
作者
Nedjalkov, M. [1 ]
Selberherr, S. [1 ]
Ferry, D. K. [2 ]
Vasileska, D. [2 ]
Dollfus, P. [3 ]
Querlioz, D. [3 ]
Dimov, I. [4 ]
Schwaha, P. [5 ]
机构
[1] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Univ Paris 11, CNRS, Inst Fundamental Elect, F-91405 Orsay, France
[4] Bulgarian Acad Sci, Inst IC Technol, Sofia, Bulgaria
[5] Shenteq Sro, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
Wigner-Boltzmann equation; Quantum transport; Decoherence; Scattering; RESONANT-TUNNELING DIODE; QUANTUM-MECHANICS; SEMICONDUCTOR; DECOHERENCE; REPRESENTATION; EQUILIBRIUM; DYNAMICS; MATRIX;
D O I
10.1016/j.aop.2012.10.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [1] Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation
    Nedjalkov, M.
    Selberherr, S.
    Dimov, I.
    NUMERICAL METHODS AND APPLICATIONS, 2011, 6046 : 95 - +
  • [2] Wigner distribution functions for complex dynamical systems: The emergence of the Wigner-Boltzmann equation
    Sels, Dries
    Brosens, Fons
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [3] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Querlioz, Damien
    Saint-Martin, Jerome
    Dollfus, Philippe
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (3-4) : 224 - 231
  • [4] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Institut d'Electronique Fondamentale, CNRS, Bâtiment 220, 91405 Orsay, France
    J. Comput. Electron., 2009, 3-4 (224-231): : 224 - 231
  • [5] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Damien Querlioz
    Jérôme Saint-Martin
    Philippe Dollfus
    Journal of Computational Electronics, 2010, 9 : 224 - 231
  • [6] A simple method to obtain the equilibrium solution of Wigner-Boltzmann equation with all higher order quantum corrections
    Anirban Bose
    Mylavarapu S. Janaki
    The European Physical Journal B, 2014, 87
  • [7] A simple method to obtain the equilibrium solution of Wigner-Boltzmann equation with all higher order quantum corrections
    Bose, Anirban
    Janaki, Mylavarapu S.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (11):
  • [8] Incorporation of quantum corrections to semiclassical two-dimensional device modeling with the Wigner-Boltzmann equation
    Han, ZY
    Goldsman, N
    Lin, CK
    SOLID-STATE ELECTRONICS, 2005, 49 (02) : 145 - 154
  • [9] Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices
    Nedjalkov, M
    Kosina, H
    Selberherr, S
    Ringhofer, C
    Ferry, DK
    PHYSICAL REVIEW B, 2004, 70 (11) : 115319 - 1
  • [10] The Wigner-Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant
    Sellier, J. M.
    Dimov, I.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2427 - 2435