Physical scales in the Wigner-Boltzmann equation

被引:23
|
作者
Nedjalkov, M. [1 ]
Selberherr, S. [1 ]
Ferry, D. K. [2 ]
Vasileska, D. [2 ]
Dollfus, P. [3 ]
Querlioz, D. [3 ]
Dimov, I. [4 ]
Schwaha, P. [5 ]
机构
[1] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Univ Paris 11, CNRS, Inst Fundamental Elect, F-91405 Orsay, France
[4] Bulgarian Acad Sci, Inst IC Technol, Sofia, Bulgaria
[5] Shenteq Sro, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
Wigner-Boltzmann equation; Quantum transport; Decoherence; Scattering; RESONANT-TUNNELING DIODE; QUANTUM-MECHANICS; SEMICONDUCTOR; DECOHERENCE; REPRESENTATION; EQUILIBRIUM; DYNAMICS; MATRIX;
D O I
10.1016/j.aop.2012.10.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [21] On a conditional Wigner equation
    J. Chmieliński
    aequationes mathematicae, 1998, 56 (1-2) : 143 - 148
  • [22] Lattice Wigner equation
    Solorzano, S.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [23] Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
    He, XY
    Luo, LS
    PHYSICAL REVIEW E, 1997, 56 (06): : 6811 - 6817
  • [24] BOLTZMANN HIERARCHY AND BOLTZMANN-EQUATION
    SPOHN, H
    LECTURE NOTES IN MATHEMATICS, 1984, 1048 : 207 - 220
  • [25] Derivation of the zeroth retardation order Boltzmann equation from nonstandard space-time Wigner quantum kinetics
    Luis Lopez, Jose
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2512 - 2524
  • [26] Physical Wigner functions
    Benavides-Riveros, Carlos L.
    Gracia-Bondia, Jose M.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [27] THE NONCLASSICAL BOLTZMANN EQUATION AND DIFFUSION-BASED APPROXIMATIONS TO THE BOLTZMANN EQUATION
    Frank, Martin
    Krycki, Kai
    Larsen, Edward W.
    Vasques, Richard
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1329 - 1345
  • [28] Scattering theory for the Wigner equation
    Emamirad, H
    Rogeon, P
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (08) : 947 - 960
  • [29] Adding Decoherence to the Wigner Equation
    Barletti, Luigi
    Frosali, Giovanni
    Giovannini, Elisa
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2018, 47 (1-3) : 209 - 225
  • [30] Existence of nonlinear boundary layer solution to the Boltzmann equation with physical boundary conditions
    Tian, Qianzhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 42 - 59