Physical scales in the Wigner-Boltzmann equation

被引:23
|
作者
Nedjalkov, M. [1 ]
Selberherr, S. [1 ]
Ferry, D. K. [2 ]
Vasileska, D. [2 ]
Dollfus, P. [3 ]
Querlioz, D. [3 ]
Dimov, I. [4 ]
Schwaha, P. [5 ]
机构
[1] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Univ Paris 11, CNRS, Inst Fundamental Elect, F-91405 Orsay, France
[4] Bulgarian Acad Sci, Inst IC Technol, Sofia, Bulgaria
[5] Shenteq Sro, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
Wigner-Boltzmann equation; Quantum transport; Decoherence; Scattering; RESONANT-TUNNELING DIODE; QUANTUM-MECHANICS; SEMICONDUCTOR; DECOHERENCE; REPRESENTATION; EQUILIBRIUM; DYNAMICS; MATRIX;
D O I
10.1016/j.aop.2012.10.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [41] ON DERIVATION OF BOLTZMANN EQUATION
    MAZUR, P
    BIEL, J
    PHYSICA, 1966, 32 (10): : 1633 - &
  • [42] ON THE RELATIVISTIC BOLTZMANN EQUATION
    姜正禄
    ActaMathematicaScientia, 1998, (03) : 348 - 360
  • [43] BOLTZMANN EQUATION FOR POLARONS
    KADANOFF, LP
    PHYSICAL REVIEW, 1963, 130 (04): : 1365 - +
  • [44] BOLTZMANN EQUATION ON RIGHT
    TURBAT, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (04): : 258 - &
  • [45] On the quantum Boltzmann equation
    Erdös, L
    Salmhofer, M
    Yau, HT
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 367 - 380
  • [46] ON THE MODIFICATION OF BOLTZMANN EQUATION
    TAKETA, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) : 357 - 358
  • [47] On the Quantum Boltzmann Equation
    László Erdős
    Manfred Salmhofer
    Horng-Tzer Yau
    Journal of Statistical Physics, 2004, 116 : 367 - 380
  • [48] Reflections on the Boltzmann equation
    Alder, BJ
    RAREFIED GAS DYNAMICS, 2001, 585 : 1 - 3
  • [49] The halo Boltzmann equation
    Biagetti, Matteo
    Desjacques, Vincent
    Kehagias, Alex
    Racco, Davide
    Riotto, Antonio
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04):
  • [50] Deterministic Solution of the Discrete Wigner Equation
    Cervenka, Johann
    Ellinghaus, Paul
    Nedjalkov, Mihail
    NUMERICAL METHODS AND APPLICATIONS (NMA 2014), 2015, 8962 : 149 - 156