Physical scales in the Wigner-Boltzmann equation

被引:23
|
作者
Nedjalkov, M. [1 ]
Selberherr, S. [1 ]
Ferry, D. K. [2 ]
Vasileska, D. [2 ]
Dollfus, P. [3 ]
Querlioz, D. [3 ]
Dimov, I. [4 ]
Schwaha, P. [5 ]
机构
[1] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
[3] Univ Paris 11, CNRS, Inst Fundamental Elect, F-91405 Orsay, France
[4] Bulgarian Acad Sci, Inst IC Technol, Sofia, Bulgaria
[5] Shenteq Sro, Bratislava, Slovakia
基金
奥地利科学基金会;
关键词
Wigner-Boltzmann equation; Quantum transport; Decoherence; Scattering; RESONANT-TUNNELING DIODE; QUANTUM-MECHANICS; SEMICONDUCTOR; DECOHERENCE; REPRESENTATION; EQUILIBRIUM; DYNAMICS; MATRIX;
D O I
10.1016/j.aop.2012.10.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 237
页数:18
相关论文
共 50 条
  • [31] INTRODUCTION OF A BOLTZMANN OBSERVABLE AND BOLTZMANN-EQUATION
    LANZ, L
    MELSHEIMER, O
    WACKER, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 131 (03) : 520 - 544
  • [32] The Boltzmann equation is a renormalization group equation
    Pashko, O
    Oono, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (06): : 555 - 561
  • [33] NONEQUILIBRIUM QUANTUM-FIELDS - CLOSED-TIME-PATH EFFECTIVE ACTION, WIGNER FUNCTION, AND BOLTZMANN-EQUATION
    CALZETTA, E
    HU, BL
    PHYSICAL REVIEW D, 1988, 37 (10): : 2878 - 2900
  • [34] BOLTZMANN-EQUATION
    BODMER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 30 (04) : 303 - 334
  • [35] On the quantum Boltzmann equation
    Pulvirenti, M
    MULTISCALE METHODS IN QUANTUM MECHANICS: THEORY AND EXPERIMENT, 2004, : 129 - 138
  • [36] ON A REPRESENTATION OF BOLTZMANN EQUATION
    ENDER, IA
    ENDER, A
    DOKLADY AKADEMII NAUK SSSR, 1970, 193 (01): : 61 - &
  • [37] On the quantum Boltzmann equation
    Pulvirenti, M
    Rarefied Gas Dynamics, 2005, 762 : 47 - 47
  • [38] STUDIES ON BOLTZMANN EQUATION
    NEUNZERT, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (08): : T221 - &
  • [39] On the relativistic Boltzmann equation
    Jiang, ZL
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (03) : 348 - 360
  • [40] BOLTZMANN EQUATION ON RIGHT
    TURBAT, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (12): : 481 - &