Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation

被引:0
|
作者
Damien Querlioz
Jérôme Saint-Martin
Philippe Dollfus
机构
[1] Univ. Paris-Sud,Institut d’Electronique Fondamentale, CNRS
来源
关键词
Wigner function; Quantum transport; Monte Carlo simulation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we detail the main numerical issues of the Monte Carlo method developed to solve the Wigner-Boltzmann transport equation and simulate the quantum transport in semiconductor nanodevices. In particular, we focus on the boundary conditions regarding the injection of particles and the limits of integration for the calculation of the Wigner potential which are of crucial importance for the physical correctness of simulation results. Through typical examples we show that this model is able to treat correctly purely quantum coherent and semi-classical transport situations as well. It is finally shown that to investigate devices operating in mixed quantum/semi-classical regimes and to analyze the transition between both regimes, this approach takes advantage of its full compatibility with Boltzmann algorithm.
引用
收藏
页码:224 / 231
页数:7
相关论文
共 50 条
  • [1] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Querlioz, Damien
    Saint-Martin, Jerome
    Dollfus, Philippe
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (3-4) : 224 - 231
  • [2] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Institut d'Electronique Fondamentale, CNRS, Bâtiment 220, 91405 Orsay, France
    J. Comput. Electron., 2009, 3-4 (224-231): : 224 - 231
  • [3] Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport
    Damien Querlioz
    Huu-Nha Nguyen
    Jérôme Saint-Martin
    Arnaud Bournel
    Sylvie Galdin-Retailleau
    Philippe Dollfus
    Journal of Computational Electronics, 2009, 8 : 324 - 335
  • [4] Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport
    Querlioz, Damien
    Huu-Nha Nguyen
    Saint-Martin, Jerome
    Bournel, Arnaud
    Galdin-Retailleau, Sylvie
    Dollfus, Philippe
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (3-4) : 324 - 335
  • [5] The Wigner-Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant
    Sellier, J. M.
    Dimov, I.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2427 - 2435
  • [6] Physical scales in the Wigner-Boltzmann equation
    Nedjalkov, M.
    Selberherr, S.
    Ferry, D. K.
    Vasileska, D.
    Dollfus, P.
    Querlioz, D.
    Dimov, I.
    Schwaha, P.
    ANNALS OF PHYSICS, 2013, 328 : 220 - 237
  • [7] Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices
    Nedjalkov, M
    Kosina, H
    Selberherr, S
    Ringhofer, C
    Ferry, DK
    PHYSICAL REVIEW B, 2004, 70 (11) : 115319 - 1
  • [8] Monte Carlo solution of the Wigner transport equation
    Rossi, Fausto
    Jacoboni, Carlo
    Nedjalkov, M.
    Semiconductor Science and Technology, 1994, 9 (5 SUPPL) : 934 - 936
  • [9] Deviational particle Monte Carlo for the Boltzmann equation
    Wagner, Wolfgang
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (03): : 191 - 268
  • [10] Stochastic Algorithm for Solving the Wigner-Boltzmann Correction Equation
    Nedjalkov, M.
    Selberherr, S.
    Dimov, I.
    NUMERICAL METHODS AND APPLICATIONS, 2011, 6046 : 95 - +