Generators of simple Lie algebras and the lower rank of some pro-p groups

被引:0
|
作者
Barnea, Y [1 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a simple classical Lie algebra over a field IT of characteristic p > 7. We show that > d(g) = 2, where d(g) is the number of generators of g. Let G be a profinite group. We say that G has lower rank less than or equal to l, if there are {G(alpha)} open subgroups which form a base for the topology at the identity and each G(alpha) is generated (topologically) by no more than 1 elements. There is a standard way to associate a Lie algebra L(G) to a finitely generated (filtered) pro-p group G. Suppose L(G) congruent to g circle times tF(p)[t], where q is a simple Lie algebra over F-p, the field of p elements. We show that the lower rank of G is less than or equal to d(g) + 1. We also show that if g is simple classical of rank r and p > 7 or p > 2r(2) - r, then the lower rank is actually 2.
引用
收藏
页码:1293 / 1303
页数:11
相关论文
共 50 条
  • [41] p-adics and pro-p groups
    Camina, R
    EUROPEAN WOMEN IN MATHEMATICS, 1999, : 99 - 100
  • [42] Homological finiteness properties of pro-p modules over metabelian pro-p groups
    Pinto, Aline G. S.
    JOURNAL OF ALGEBRA, 2006, 301 (01) : 96 - 111
  • [43] A pro-p version of Sela's accessibility and Poincaré duality pro-p groups
    Castellano, Ilaria
    Zalesskii, Pavel A.
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (04) : 1349 - 1368
  • [44] Virtually free pro-p groups
    Wolfgang Herfort
    Pavel Zalesskii
    Publications mathématiques de l'IHÉS, 2013, 118 : 193 - 211
  • [45] FREE PRO-P GROUPS WITH OPERATORS
    BAUMANN, B
    MANUSCRIPTA MATHEMATICA, 1991, 73 (04) : 385 - 396
  • [46] PRO-P GROUPS OF FINITE COCLASS
    SHALEV, A
    ZELMANOV, EI
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 417 - 421
  • [47] Omega subgroups of pro-p groups
    Fernandez-Alcober, Gustavo A.
    Gonzalez-Sanchez, Jon
    Jaikin-Zapirain, Andrei
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 166 (01) : 393 - 412
  • [48] Virtually free pro-p groups
    Herfort, Wolfgang
    Zalesskii, Pavel
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (118): : 193 - 211
  • [49] Relatively projective pro-p groups
    Dan Haran
    Pavel A. Zalesskii
    Israel Journal of Mathematics, 2023, 257 : 313 - 352
  • [50] A CHARACTERIZATION OF UNIFORM PRO-p GROUPS
    Klopsch, Benjamin
    Snopce, Ilir
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04): : 1277 - 1291