Homological finiteness properties of pro-p modules over metabelian pro-p groups

被引:0
|
作者
Pinto, Aline G. S. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
metabelian pro-p groups; pro-p modules; homological type FPm;
D O I
10.1016/j.jalgebra.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the modules B of homological type FPm over Z(p) [G], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p Z(p) [Q]-module that is viewed as a pro-p Z(p) [G]-module via the projection G -> Q. The characterization is given in terms of the invariant introduced by King [J.D. King, A geometric invariant for metabelian pro-p groups, J. London Math. Soc. (2) 60 (1) (1999) 83-94] and is a generalization of the case when B = Z(p) is considered as a trivial Z(p) [G]-module that gives the classification of metabelian pro-p groups of type FPm [D.H. Kochloukova, Metabelian pro-p groups of type FPm, J. Group Theory 3 (4) (2000) 419-431]. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [1] Homological finiteness conditions for pro-p groups
    King, JD
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4969 - 4991
  • [2] Embedding properties of metabelian pro-p groups
    Kochloukova, Dessislava H.
    Pinto, Aline G. S.
    JOURNAL OF GROUP THEORY, 2006, 9 (04) : 455 - 465
  • [3] A geometric invariant for metabelian pro-p groups
    King, JD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 83 - 94
  • [4] Metabelian pro-p groups of type FPm
    Kochloukova, DH
    JOURNAL OF GROUP THEORY, 2000, 3 (04) : 419 - 431
  • [5] Homological approximations for profinite and pro-p limit groups
    Gutierrez, Jhoel S.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1510 - 1527
  • [6] Splitting theorems for pro-p groups acting on pro-p trees
    Wolfgang Herfort
    Pavel Zalesskii
    Theo Zapata
    Selecta Mathematica, 2016, 22 : 1245 - 1268
  • [7] Splitting theorems for pro-p groups acting on pro-p trees
    Herfort, Wolfgang
    Zalesskii, Pavel
    Zapata, Theo
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1245 - 1268
  • [8] Pro-p groups with waists
    Gavioli, Norberto
    Monti, Valerio
    Scoppola, Carlo Maria
    JOURNAL OF ALGEBRA, 2012, 351 (01) : 130 - 137
  • [9] 1-SMOOTH PRO-p GROUPS AND BLOCH-KATO PRO-p GROUPS
    Quadrelli, Claudio
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 53 - 67
  • [10] On accessibility for pro-p groups
    Wilkes, Gareth
    JOURNAL OF ALGEBRA, 2019, 525 : 1 - 18