Homological finiteness properties of pro-p modules over metabelian pro-p groups

被引:0
|
作者
Pinto, Aline G. S. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
metabelian pro-p groups; pro-p modules; homological type FPm;
D O I
10.1016/j.jalgebra.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the modules B of homological type FPm over Z(p) [G], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p Z(p) [Q]-module that is viewed as a pro-p Z(p) [G]-module via the projection G -> Q. The characterization is given in terms of the invariant introduced by King [J.D. King, A geometric invariant for metabelian pro-p groups, J. London Math. Soc. (2) 60 (1) (1999) 83-94] and is a generalization of the case when B = Z(p) is considered as a trivial Z(p) [G]-module that gives the classification of metabelian pro-p groups of type FPm [D.H. Kochloukova, Metabelian pro-p groups of type FPm, J. Group Theory 3 (4) (2000) 419-431]. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [21] p-adics and pro-p groups
    Camina, R
    EUROPEAN WOMEN IN MATHEMATICS, 1999, : 99 - 100
  • [22] Analytic groups over general pro-p domains
    Jaikin-Zapirain, Andrei
    Klopsch, Benjamin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 365 - 383
  • [23] Virtually free pro-p groups
    Wolfgang Herfort
    Pavel Zalesskii
    Publications mathématiques de l'IHÉS, 2013, 118 : 193 - 211
  • [24] FREE PRO-P GROUPS WITH OPERATORS
    BAUMANN, B
    MANUSCRIPTA MATHEMATICA, 1991, 73 (04) : 385 - 396
  • [25] Relatively projective pro-p groups
    Dan Haran
    Pavel A. Zalesskii
    Israel Journal of Mathematics, 2023, 257 : 313 - 352
  • [26] A CHARACTERIZATION OF UNIFORM PRO-p GROUPS
    Klopsch, Benjamin
    Snopce, Ilir
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04): : 1277 - 1291
  • [27] PRO-P GROUPS OF FINITE COCLASS
    SHALEV, A
    ZELMANOV, EI
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 417 - 421
  • [28] Omega subgroups of pro-p groups
    Fernandez-Alcober, Gustavo A.
    Gonzalez-Sanchez, Jon
    Jaikin-Zapirain, Andrei
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 166 (01) : 393 - 412
  • [29] Virtually free pro-p groups
    Herfort, Wolfgang
    Zalesskii, Pavel
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (118): : 193 - 211
  • [30] Relatively projective pro-p groups
    Haran, Dan
    Zalesskii, Pavel A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 313 - 352