Homological finiteness properties of pro-p modules over metabelian pro-p groups

被引:0
|
作者
Pinto, Aline G. S. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
metabelian pro-p groups; pro-p modules; homological type FPm;
D O I
10.1016/j.jalgebra.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the modules B of homological type FPm over Z(p) [G], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p Z(p) [Q]-module that is viewed as a pro-p Z(p) [G]-module via the projection G -> Q. The characterization is given in terms of the invariant introduced by King [J.D. King, A geometric invariant for metabelian pro-p groups, J. London Math. Soc. (2) 60 (1) (1999) 83-94] and is a generalization of the case when B = Z(p) is considered as a trivial Z(p) [G]-module that gives the classification of metabelian pro-p groups of type FPm [D.H. Kochloukova, Metabelian pro-p groups of type FPm, J. Group Theory 3 (4) (2000) 419-431]. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [41] Locally pro-p contraction groups are nilpotent
    Gloeckner, Helge
    Willis, George A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 85 - 103
  • [42] On small waist pairs in pro-p groups
    Gavioli, Norberto
    Legarreta, Leire
    Ruscitti, Marco
    Scoppola, Carlo Maria
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 263 - 272
  • [43] Pro-p link groups and p-homology groups
    Hillman, Jonathan
    Matei, Daniel
    Morishita, Masanori
    PRIMES AND KNOTS, 2006, 416 : 121 - 136
  • [44] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254
  • [45] Small maximal pro-p Galois groups
    Efrat, I
    MANUSCRIPTA MATHEMATICA, 1998, 95 (02) : 237 - 249
  • [46] Free-by-Demushkin pro-p groups
    Kochloukova, DH
    Zalesskii, P
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 731 - 739
  • [47] Groups with the same cohomology as their pro-p completions
    Lorensen, Karl
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) : 6 - 14
  • [48] p-Projective groups and pro-p trees
    Weigel, Thomas
    ISCHIA: GROUP THEORY 2008, 2009, : 265 - 296
  • [49] Pro-p galois groups of rank ≤4
    Jochen Koenigsmann
    manuscripta mathematica, 1998, 95 (1) : 251 - 271
  • [50] Pro-p groups that act on profinite trees
    Ribes, Luis
    JOURNAL OF GROUP THEORY, 2008, 11 (01) : 75 - 93