Homological finiteness properties of pro-p modules over metabelian pro-p groups

被引:0
|
作者
Pinto, Aline G. S. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
metabelian pro-p groups; pro-p modules; homological type FPm;
D O I
10.1016/j.jalgebra.2005.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the modules B of homological type FPm over Z(p) [G], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p Z(p) [Q]-module that is viewed as a pro-p Z(p) [G]-module via the projection G -> Q. The characterization is given in terms of the invariant introduced by King [J.D. King, A geometric invariant for metabelian pro-p groups, J. London Math. Soc. (2) 60 (1) (1999) 83-94] and is a generalization of the case when B = Z(p) is considered as a trivial Z(p) [G]-module that gives the classification of metabelian pro-p groups of type FPm [D.H. Kochloukova, Metabelian pro-p groups of type FPm, J. Group Theory 3 (4) (2000) 419-431]. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:96 / 111
页数:16
相关论文
共 50 条
  • [31] On pro-p groups with quadratic cohomology
    Quadrelli, C.
    Snopce, I.
    Vannacci, M.
    JOURNAL OF ALGEBRA, 2022, 612 : 636 - 690
  • [32] Pro-p groups of finite width
    Camina, AR
    Camina, RD
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1583 - 1593
  • [33] Omega subgroups of pro-p groups
    Gustavo A. Fernández-Alcober
    Jon González-Sánchez
    Andrei Jaikin-Zapirain
    Israel Journal of Mathematics, 2008, 166
  • [34] Pro-p groups of positive deficiency
    Hillman, Jonathan A.
    Schmidt, Alexander
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 1065 - 1069
  • [35] Weak commutativity for pro-p groups
    Dessislava H. Kochloukova
    Luís Mendonça
    Monatshefte für Mathematik, 2021, 194 : 555 - 575
  • [36] CYCLIC EXTENSIONS OF FREE PRO-P GROUPS AND P-ADIC MODULES
    Porto, Anderson L. P.
    Zalesskii, Pavel A.
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) : 537 - 545
  • [37] Free pro-p groups as Galois groups over Q(p)(t)
    Sonn, J
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) : 1 - 8
  • [38] p-Johnson homomorphisms and pro-p groups
    Morishita, Masanori
    Terashima, Yuji
    JOURNAL OF ALGEBRA, 2017, 479 : 102 - 136
  • [39] p-extensions of free pro-p groups
    Herfort, WN
    Ribes, L
    Zalesskii, PA
    FORUM MATHEMATICUM, 1999, 11 (01) : 49 - 61
  • [40] Character degrees of p-groups and pro-p groups
    Golsefidy, AS
    JOURNAL OF ALGEBRA, 2005, 286 (02) : 476 - 491