A pro-p version of Sela's accessibility and Poincaré duality pro-p groups

被引:1
|
作者
Castellano, Ilaria [1 ]
Zalesskii, Pavel A. [2 ]
机构
[1] Bielefeld Univ, Fac Math, Univ str 25, D-33501 Bielefeld, Germany
[2] Univ Brasilia, Dept Math, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, Brazil
关键词
Pro-p groups; pro-p trees; k-acylindrical; accessibility; !text type='JS']JS[!/text]J-decomposition; FINITELY PRESENTED GROUPS; SPLITTINGS; PROFINITE;
D O I
10.4171/GGD/769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a pro-p version of Sela's theorem (1997) stating that a finitely generated group is k-acylindrically accessible. This result is then used to prove that PDn n pro-p groups admit a unique k-acylindrical JSJ-decomposition.
引用
收藏
页码:1349 / 1368
页数:20
相关论文
共 50 条
  • [1] Pro-p completions of Poincaré duality groups
    Jonathan Hillman
    Dessislava Kochloukova
    Igor Lima
    Israel Journal of Mathematics, 2014, 200 : 1 - 17
  • [2] Pro-p completions of Poincar, duality groups
    Hillman, Jonathan
    Kochloukova, Dessislava
    Lima, Igor
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 1 - 17
  • [3] On accessibility for pro-p groups
    Wilkes, Gareth
    JOURNAL OF ALGEBRA, 2019, 525 : 1 - 18
  • [4] Splitting theorems for pro-p groups acting on pro-p trees
    Wolfgang Herfort
    Pavel Zalesskii
    Theo Zapata
    Selecta Mathematica, 2016, 22 : 1245 - 1268
  • [5] Splitting theorems for pro-p groups acting on pro-p trees
    Herfort, Wolfgang
    Zalesskii, Pavel
    Zapata, Theo
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1245 - 1268
  • [6] Pro-p groups with waists
    Gavioli, Norberto
    Monti, Valerio
    Scoppola, Carlo Maria
    JOURNAL OF ALGEBRA, 2012, 351 (01) : 130 - 137
  • [7] 1-SMOOTH PRO-p GROUPS AND BLOCH-KATO PRO-p GROUPS
    Quadrelli, Claudio
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 53 - 67
  • [8] Homological finiteness properties of pro-p modules over metabelian pro-p groups
    Pinto, Aline G. S.
    JOURNAL OF ALGEBRA, 2006, 301 (01) : 96 - 111
  • [9] Cyclic splittings of pro-p groups
    Berdugo, Jesus
    Zalesskii, Pavel
    JOURNAL OF ALGEBRA, 2024, 660 : 291 - 309
  • [10] Subdirect products of pro-p groups
    Kochloukova, Dessislava H.
    Zalesskii, Pavel A.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 158 (02) : 289 - 303