Generators of simple Lie algebras and the lower rank of some pro-p groups

被引:0
|
作者
Barnea, Y [1 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a simple classical Lie algebra over a field IT of characteristic p > 7. We show that > d(g) = 2, where d(g) is the number of generators of g. Let G be a profinite group. We say that G has lower rank less than or equal to l, if there are {G(alpha)} open subgroups which form a base for the topology at the identity and each G(alpha) is generated (topologically) by no more than 1 elements. There is a standard way to associate a Lie algebra L(G) to a finitely generated (filtered) pro-p group G. Suppose L(G) congruent to g circle times tF(p)[t], where q is a simple Lie algebra over F-p, the field of p elements. We show that the lower rank of G is less than or equal to d(g) + 1. We also show that if g is simple classical of rank r and p > 7 or p > 2r(2) - r, then the lower rank is actually 2.
引用
收藏
页码:1293 / 1303
页数:11
相关论文
共 50 条
  • [31] On character generators for simple Lie algebras
    Okeke, N.
    Walton, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) : 8873 - 8901
  • [32] Homological invariants for pro-p groups and some finitely presented pro-l groups
    Kochloukova, DH
    Zalesskii, P
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (04): : 285 - 296
  • [33] Simple p-adic Lie groups with abelian Lie algebras
    Caprace, Pierre-Emmanuel
    Minasyan, Ashot
    Osin, Denis
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (812): : 229 - 256
  • [34] Zassenhaus and lower central filtrations of pro-p groups considered as modules
    Hamza, Oussama
    JOURNAL OF ALGEBRA, 2023, 633 : 172 - 204
  • [35] Cyclic splittings of pro-p groups
    Berdugo, Jesus
    Zalesskii, Pavel
    JOURNAL OF ALGEBRA, 2024, 660 : 291 - 309
  • [36] Subdirect products of pro-p groups
    Kochloukova, Dessislava H.
    Zalesskii, Pavel A.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 158 (02) : 289 - 303
  • [37] Computing pro-p Galois groups
    Boston, Nigel
    Nover, Harris
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 1 - 10
  • [38] Embedding theorems for pro-p groups
    King, JD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 217 - 226
  • [39] On pro-p groups with potent filtrations
    Moravec, Primoz
    JOURNAL OF ALGEBRA, 2009, 322 (01) : 254 - 258
  • [40] SIMPLE GROUPS AND SIMPLE LIE ALGEBRAS
    CARTER, RW
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (158P): : 193 - &