A new class of antimagic Cartesian product graphs

被引:33
|
作者
Cheng, Yongxi [1 ]
机构
[1] Tsinghua Univ, Inst Theoret Comp Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Antimagic; Magic; Labeling; Regular graph; Cartesian product;
D O I
10.1016/j.disc.2007.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,...,m such that all n-vertex sums are pairwise distinct, where I vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield. G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K-2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conferences COCOON'2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6441 / 6448
页数:8
相关论文
共 50 条
  • [31] Protection of Graphs with Emphasis on Cartesian Product Graphs
    Valveny, Magdalena
    Alberto Rodriguez-Velazquez, Juan
    FILOMAT, 2019, 33 (01) : 319 - 333
  • [32] On the local antimagic chromatic number of the lexicographic product of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Kanthavadivel, Premalatha
    Zhang, Ruixue
    Movirichettiar, Nalliah
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 76 - 83
  • [33] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170
  • [34] On local antimagic chromatic number of lexicographic product graphs
    Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Johor Branch, Segamat Campus, 85000, Malaysia
    不详
    arXiv,
  • [35] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [36] Local Edge Antimagic Coloring of Comb Product of Graphs
    Agustin, Ika Hesti
    Hasan, Moh.
    Dafik
    Alfarisi, Ridho
    Kristiana, A. I.
    Prihandini, R. M.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [37] Strong resolving partitions for strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 70 - 78
  • [38] FACTORING CARTESIAN-PRODUCT GRAPHS
    IMRICH, W
    ZEROVNIK, J
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 557 - 567
  • [39] The rainbow connectivity of cartesian product graphs
    Chen, Xing
    Li, Xueliang
    Wang, Jianfeng
    Fan, Nannan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (06): : 901 - 914
  • [40] Extraconnectivity of Cartesian product graphs of paths
    Fu, Mingyan
    Yang, Weihua
    Meng, Jixiang
    ARS COMBINATORIA, 2010, 96 : 515 - 520