A new class of antimagic Cartesian product graphs

被引:33
|
作者
Cheng, Yongxi [1 ]
机构
[1] Tsinghua Univ, Inst Theoret Comp Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Antimagic; Magic; Labeling; Regular graph; Cartesian product;
D O I
10.1016/j.disc.2007.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,...,m such that all n-vertex sums are pairwise distinct, where I vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield. G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K-2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conferences COCOON'2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6441 / 6448
页数:8
相关论文
共 50 条
  • [21] On linkedness in the Cartesian product of graphs
    Gábor Mészáros
    Periodica Mathematica Hungarica, 2016, 72 : 130 - 138
  • [22] Panconnectivity of Cartesian product graphs
    You Lu
    Jun-Ming Xu
    The Journal of Supercomputing, 2011, 56 : 182 - 189
  • [23] Connectivity of Cartesian product graphs
    Xu, JM
    Yang, C
    DISCRETE MATHEMATICS, 2006, 306 (01) : 159 - 165
  • [24] The antimagicness of the Cartesian product of graphs
    Zhang, Yuchen
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 727 - 735
  • [25] On the connectivity of Cartesian product of graphs
    Govorcin, Jelena
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (02) : 293 - 297
  • [26] The Cartesian product of graphs with loops
    Boiko, Tetiana
    Cuno, Johannes
    Imrich, Wilfried
    Lehner, Florian
    van de Woestijne, Christiaan E.
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 1 - 9
  • [27] WEAK CARTESIAN PRODUCT OF GRAPHS
    MILLER, DJ
    COLLOQUIUM MATHEMATICUM, 1970, 21 (01) : 55 - &
  • [28] The partition dimension of strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    Jakovac, Marko
    Kuziak, Dorota
    Taranenko, Andrej
    DISCRETE MATHEMATICS, 2014, 331 : 43 - 52
  • [29] Distance degree graphs in the Cartesian product of graphs
    Chithra, M. R.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (06): : 743 - 750
  • [30] ROMAN DOMINATION IN CARTESIAN PRODUCT GRAPHS AND STRONG PRODUCT GRAPHS
    Gonzalez Yero, Ismael
    Alberto Rodriguez-Velazquez, Juan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 262 - 274