A new class of antimagic Cartesian product graphs

被引:33
|
作者
Cheng, Yongxi [1 ]
机构
[1] Tsinghua Univ, Inst Theoret Comp Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Antimagic; Magic; Labeling; Regular graph; Cartesian product;
D O I
10.1016/j.disc.2007.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,...,m such that all n-vertex sums are pairwise distinct, where I vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield. G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K-2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conferences COCOON'2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6441 / 6448
页数:8
相关论文
共 50 条
  • [41] THE THICKNESS OF AMALGAMATIONS AND CARTESIAN PRODUCT OF GRAPHS
    Yang, Yan
    Chen, Yichao
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 561 - 572
  • [42] Game Coloring the Cartesian Product of Graphs
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2008, 59 (04) : 261 - 278
  • [43] Gromov hyperbolicity in Cartesian product graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 593 - 609
  • [44] The Menger number of the Cartesian product of graphs
    Ma, Meijie
    Xu, Jun-Ming
    Zhu, Qiang
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 627 - 629
  • [45] On the security number of the Cartesian product of graphs
    Jakovac, Marko
    Otachi, Yota
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 119 - 128
  • [46] Betweenness centrality in Cartesian product of graphs
    Kumar, Sunil R.
    Balakrishnan, Kannan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 571 - 583
  • [47] The Cover Time of Cartesian Product Graphs
    Abdullah, Mohammed
    Cooper, Colin
    Radzik, Tomasz
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 377 - 389
  • [48] THE DIAMETER VARIABILITY OF THE CARTESIAN PRODUCT OF GRAPHS
    Chithra, M. R.
    Vijayakumar, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)
  • [49] The Thickness of the Cartesian Product of Two Graphs
    Chen, Yichao
    Yin, Xuluo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 705 - 720
  • [50] Gromov hyperbolicity in Cartesian product graphs
    Junior Michel
    José M. Rodríguez
    José M. Sigarreta
    María Villeta
    Proceedings - Mathematical Sciences, 2010, 120 : 593 - 609