Wei-type duality theorems for rank metric codes

被引:7
|
作者
Britz, Thomas [1 ]
Mammoliti, Adam [2 ]
Shiromoto, Keisuke [3 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Kumamoto Univ, Dept Math & Engn, 2-39-1 Kurokami, Kumamoto 8608555, Japan
关键词
Rank-metric code; Wei's Duality Theorem; Demimatroid; GENERALIZED HAMMING WEIGHTS; LINEAR CODES; ENUMERATORS; SUPPORTS; DESIGNS;
D O I
10.1007/s10623-019-00688-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend and provide new proofs of the Wei-type duality theorems, due to Ducoat and Ravagnani, for Gabidulin-Roth rank-metric codes and for Delsarte rank-metric codes. These results follow as corollaries from fundamental Wei-type duality theorems that we prove for certain general combinatorial structures.
引用
收藏
页码:1503 / 1519
页数:17
相关论文
共 50 条
  • [1] Wei-type duality theorems for rank metric codes
    Thomas Britz
    Adam Mammoliti
    Keisuke Shiromoto
    Designs, Codes and Cryptography, 2020, 88 : 1503 - 1519
  • [2] Wei-type duality theorems for matroids
    Britz, Thomas
    Johnsen, Trygve
    Mayhew, Dillon
    Shiromoto, Keisuke
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (03) : 331 - 341
  • [3] Wei-type duality theorems for matroids
    Thomas Britz
    Trygve Johnsen
    Dillon Mayhew
    Keisuke Shiromoto
    Designs, Codes and Cryptography, 2012, 62 : 331 - 341
  • [4] A Galois Connection Approach to Wei-Type Duality Theorems
    Xu, Yang
    Kan, Haibin
    Han, Guangyue
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) : 5133 - 5144
  • [5] Rank Metric Codes and Their Galois Duality
    Gao, Qing
    Ding, Yang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (08) : 1067 - 1071
  • [6] Hermitian Rank Metric Codes and Duality
    La Cruz, Javier De
    Evilla, Jorge Robinson
    Ozbudak, Ferruh
    IEEE ACCESS, 2021, 9 : 38479 - 38487
  • [7] Rank-metric codes and their duality theory
    Ravagnani, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 197 - 216
  • [8] Rank-metric codes and their duality theory
    Alberto Ravagnani
    Designs, Codes and Cryptography, 2016, 80 : 197 - 216
  • [9] Rank-metric codes, linear sets, and their duality
    John Sheekey
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2020, 88 : 655 - 675
  • [10] Rank-metric codes, linear sets, and their duality
    Sheekey, John
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 655 - 675