Wei-type duality theorems for rank metric codes

被引:7
|
作者
Britz, Thomas [1 ]
Mammoliti, Adam [2 ]
Shiromoto, Keisuke [3 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Kumamoto Univ, Dept Math & Engn, 2-39-1 Kurokami, Kumamoto 8608555, Japan
关键词
Rank-metric code; Wei's Duality Theorem; Demimatroid; GENERALIZED HAMMING WEIGHTS; LINEAR CODES; ENUMERATORS; SUPPORTS; DESIGNS;
D O I
10.1007/s10623-019-00688-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend and provide new proofs of the Wei-type duality theorems, due to Ducoat and Ravagnani, for Gabidulin-Roth rank-metric codes and for Delsarte rank-metric codes. These results follow as corollaries from fundamental Wei-type duality theorems that we prove for certain general combinatorial structures.
引用
收藏
页码:1503 / 1519
页数:17
相关论文
共 50 条
  • [21] Column Rank Distances of Rank Metric Convolutional Codes
    Napp, Diego
    Pinto, Raquel
    Rosenthal, Joachim
    Santana, Filipa
    CODING THEORY AND APPLICATIONS, ICMCTA 2017, 2017, 10495 : 248 - 256
  • [22] Valued rank-metric codes
    El Maazouz, Yassine
    Hahn, Marvin Anas
    Neri, Alessandro
    Stanojkovski, Mima
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (04)
  • [23] Divisible Linear Rank Metric Codes
    Polverino, Olga
    Santonastaso, Paolo
    Sheekey, John
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4528 - 4536
  • [24] MRD Rank Metric Convolutional Codes
    Napp, Diego
    Pinto, Raquel
    Rosenthal, Joachim
    Vettori, Paolo
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2766 - 2770
  • [25] Rank-Metric Codes and Their Applications
    Bartz, Hannes
    Holzbaur, Lukas
    Liu, Hedongliang
    Puchinger, Sven
    Renner, Julian
    Wachter-Zeh, Antonia
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2022, 19 (03): : 390 - 546
  • [26] A new rank metric for convolutional codes
    P. Almeida
    D. Napp
    Designs, Codes and Cryptography, 2021, 89 : 53 - 73
  • [27] Rank metric codes and zeta functions
    Blanco-Chacon, I.
    Byrne, E.
    Duursma, I.
    Sheekey, J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (08) : 1767 - 1792
  • [28] On the List Decodability of Rank Metric Codes
    Trombetti, Rocco
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5379 - 5386
  • [29] On kernels and nuclei of rank metric codes
    Lunardon, Guglielmo
    Trombetti, Rocco
    Zhou, Yue
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (02) : 313 - 340
  • [30] A new rank metric for convolutional codes
    Almeida, P.
    Napp, D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (01) : 53 - 73