Rank-metric codes and their duality theory

被引:0
|
作者
Alberto Ravagnani
机构
[1] Université de Neuchâtel,Institut de Mathématiques
来源
关键词
Rank-metric code; Duality; MacWilliams identity; Network coding; Trace; Matrix; 15A03; 15A99; 15B99;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the two duality theories of rank-metric codes proposed by Delsarte and Gabidulin, proving that the former generalizes the latter. We also give an elementary proof of MacWilliams identities for the general case of Delsarte rank-metric codes. The identities which we derive are very easy to handle, and allow us to re-establish in a very concise way the main results of the theory of rank-metric codes first proved by Delsarte employing association schemes and regular semilattices. We also show that our identities imply as a corollary the original MacWilliams identities established by Delsarte. We describe how the minimum and maximum rank of a rank-metric code relate to the minimum and maximum rank of the dual code, giving some bounds and characterizing the codes attaining them. Then we study optimal anticodes in the rank metric, describing them in terms of optimal codes (namely, MRD codes). In particular, we prove that the dual of an optimal anticode is an optimal anticode. Finally, as an application of our results to a classical problem in enumerative combinatorics, we derive both a recursive and an explicit formula for the number of k×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \times m$$\end{document} matrices over a finite field with given rank and h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-trace.
引用
收藏
页码:197 / 216
页数:19
相关论文
共 50 条
  • [1] Rank-metric codes and their duality theory
    Ravagnani, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 197 - 216
  • [2] Rank-metric codes, linear sets, and their duality
    Sheekey, John
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 655 - 675
  • [3] Rank-metric codes, linear sets, and their duality
    John Sheekey
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2020, 88 : 655 - 675
  • [4] Valued rank-metric codes
    El Maazouz, Yassine
    Hahn, Marvin Anas
    Neri, Alessandro
    Stanojkovski, Mima
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (04)
  • [5] Rank-Metric Codes and Their Applications
    Bartz, Hannes
    Holzbaur, Lukas
    Liu, Hedongliang
    Puchinger, Sven
    Renner, Julian
    Wachter-Zeh, Antonia
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2022, 19 (03): : 390 - 546
  • [6] Rank-metric complementary dual codes
    Liu, Xiusheng
    Liu, Hualu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 61 (1-2) : 281 - 295
  • [7] Rank-Metric Codes with Local Recoverability
    Kadhe, Swanand
    El Rouayheb, Salim
    Duursma, Iwan
    Sprintson, Alex
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 1033 - 1040
  • [8] Tensor Representation of Rank-Metric Codes
    Byrne, Eimear
    Neri, Alessandro
    Ravagnani, Alberto
    Sheekey, John
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (04): : 614 - 643
  • [9] Weight distribution of rank-metric codes
    de la Cruz, Javier
    Gorla, Elisa
    Lopez, Hiram H.
    Ravagnani, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (01) : 1 - 16
  • [10] Weight distribution of rank-metric codes
    Javier de la Cruz
    Elisa Gorla
    Hiram H. López
    Alberto Ravagnani
    Designs, Codes and Cryptography, 2018, 86 : 1 - 16