Rank Metric Codes and Their Galois Duality

被引:0
|
作者
Gao, Qing [1 ]
Ding, Yang [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
rank metric codes; Galois inner product; LCD; self-dual codes; self-orthogonal codes;
D O I
10.1587/transfun.2022EAL2090
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we describe the Galois dual of rank metric codes in the ambient space F-nxm (Q) and F-Qm(n), where Q = q(e). We obtain connections between the duality of rank metric codes with respect to distinct Galois inner products. Furthermore, for 0 <= s < e, we introduce the concept of q(sm)-dual bases of F-Qm over F-Q and obtain some conditions about the existence of q(sm)-self-dual basis.
引用
收藏
页码:1067 / 1071
页数:5
相关论文
共 50 条
  • [1] Hermitian Rank Metric Codes and Duality
    La Cruz, Javier De
    Evilla, Jorge Robinson
    Ozbudak, Ferruh
    IEEE ACCESS, 2021, 9 : 38479 - 38487
  • [2] Rank-metric codes and their duality theory
    Ravagnani, Alberto
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 197 - 216
  • [3] Rank-metric codes and their duality theory
    Alberto Ravagnani
    Designs, Codes and Cryptography, 2016, 80 : 197 - 216
  • [4] Cardinal rank metric codes over Galois rings
    Epelde, Markel
    Rua, Ignacio F.
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [5] Rank-metric codes, linear sets, and their duality
    John Sheekey
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2020, 88 : 655 - 675
  • [6] Rank-metric codes, linear sets, and their duality
    Sheekey, John
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 655 - 675
  • [7] Wei-type duality theorems for rank metric codes
    Thomas Britz
    Adam Mammoliti
    Keisuke Shiromoto
    Designs, Codes and Cryptography, 2020, 88 : 1503 - 1519
  • [8] Wei-type duality theorems for rank metric codes
    Britz, Thomas
    Mammoliti, Adam
    Shiromoto, Keisuke
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (08) : 1503 - 1519
  • [9] Rank-Metric Codes Over Arbitrary Galois Extensions and Rank Analogues of Reed-Muller Codes
    Augot, Daniel
    Couvreur, Alain
    Lavauzelle, Julien
    Neri, Alessandro
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2021, 5 (02) : 165 - 199
  • [10] MacWilliams duality for rank metric codes over finite chain rings
    Blanco-Chacon, Ivan
    Boix, Alberto F.
    Greferath, Marcus
    Hieta-Aho, Erik
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103