Wei-type duality theorems for matroids

被引:0
|
作者
Thomas Britz
Trygve Johnsen
Dillon Mayhew
Keisuke Shiromoto
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] University of Tromsø,Department of Mathematics and Statistics
[3] Statistics and Operations Research,School of Mathematics
[4] Victoria University,Department of Mathematics and Engineering
[5] Kumamoto University,undefined
来源
关键词
Matroid duality theorems; Demi-matroid; Poset code; Wei’s Duality Theorem; Matroid design; 05B35; 06A07; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
We present several fundamental duality theorems for matroids and more general combinatorial structures. As a special case, these results show that the maximal cardinalities of fixed-ranked sets of a matroid determine the corresponding maximal cardinalities of the dual matroid. Our main results are applied to perfect matroid designs, graphs, transversals, and linear codes over division rings, in each case yielding a duality theorem for the respective class of objects.
引用
收藏
页码:331 / 341
页数:10
相关论文
共 50 条
  • [1] Wei-type duality theorems for matroids
    Britz, Thomas
    Johnsen, Trygve
    Mayhew, Dillon
    Shiromoto, Keisuke
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (03) : 331 - 341
  • [2] Wei-type duality theorems for rank metric codes
    Britz, Thomas
    Mammoliti, Adam
    Shiromoto, Keisuke
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (08) : 1503 - 1519
  • [3] Wei-type duality theorems for rank metric codes
    Thomas Britz
    Adam Mammoliti
    Keisuke Shiromoto
    Designs, Codes and Cryptography, 2020, 88 : 1503 - 1519
  • [4] A Galois Connection Approach to Wei-Type Duality Theorems
    Xu, Yang
    Kan, Haibin
    Han, Guangyue
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) : 5133 - 5144
  • [5] Unifying Duality Theorems for Width Parameters in Graphs and Matroids (Extended Abstract)
    Diestel, Reinhard
    Oum, Sang-il
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 1 - 14
  • [6] MATROIDS AND DUALITY
    HIGGS, DA
    COLLOQUIUM MATHEMATICUM, 1969, 20 (02) : 215 - &
  • [7] Ore-type and Dirac-type theorems for matroids
    McGuinness, Sean
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (06) : 827 - 842
  • [8] Tverberg-Type Theorems for Matroids: A Counterexample and a Proof
    Pavle V. M. Blagojević
    Albert Haase
    Günter M. Ziegler
    Combinatorica, 2019, 39 : 477 - 500
  • [9] Tverberg-Type Theorems for Matroids: A Counterexample and a Proof
    Blagojevic, Pavle V. M.
    Haase, Albert
    Ziegler, Guenter M.
    COMBINATORICA, 2019, 39 (03) : 477 - 500
  • [10] DUALITY IN THEORY OF MATROIDS
    LASVERGN.M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (13): : 804 - &