Regularity results for a class of obstacle problems in Heisenberg groups

被引:5
|
作者
Bigolin, Francesco [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Povo, Trento, Italy
关键词
obstacle problem; weak solution; regularity; Heisenberg group; P-HARMONIC FUNCTIONS; EQUATIONS; GRADIENT; C-1; C-ALPHA-REGULARITY; BOUNDARY;
D O I
10.1007/s10492-013-0027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity results for solutions u is an element of HW (1,p) (Omega) to the obstacle problem integral(Omega) A(x, del(H)u)del(H)(v - u) d x >= 0 for all(v) is an element of K-psi, (u) (Omega) such that u >= psi a.e. in Omega, where K-psi, (u) (Omega) = {v is an element of HW (1,p) (Omega): v - u is an element of HW0 (1,p) (Omega)v >= psi a.e in Omega}, in Heisenberg groups H (n) . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. T psi is an element of HWloc1,p (Omega) double right arrow T u is an element of L-loc(p) (Omega), vertical bar del(H)psi vertical bar(p) is an element of L-loc(q) (Omega) double right arrow vertical bar del(H)u vertical bar(p) is an element of L-loc(q) (Omega), where 2 < p < 4, q > 1.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 50 条
  • [21] Regularity of solutions of obstacle problems
    苏剑
    王立周
    Academic Journal of Xi'an Jiaotong University, 2007, (01) : 7 - 8
  • [22] Regularity results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions
    Gentile, Andrea
    Giova, Raffaella
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [23] Regularity of Convex Functions on Heisenberg Groups
    Balogh, Zoltan M.
    Rickly, Matthieu
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2003, 2 (04) : 847 - 868
  • [24] Regularity results for quasiminima of a class of double phase problems
    Nastasi, Antonella
    Camacho, Cintia Pacchiano
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 1291 - 1345
  • [25] INTERIOR REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS
    MICHAEL, JH
    ZIEMER, WP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) : 1427 - 1448
  • [26] Regularity for solutions to anisotropic obstacle problems
    HongYa Gao
    Science China Mathematics, 2014, 57 : 111 - 122
  • [27] Sharp regularity for singular obstacle problems
    Araujo, Damiao J.
    Teymurazyan, Rafayel
    Voskanyan, Vardan
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1367 - 1401
  • [28] LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS
    高红亚
    郭静
    左亚丽
    褚玉明
    ActaMathematicaScientia, 2010, 30 (01) : 208 - 214
  • [29] Regularity of Free Boundaries in Obstacle Problems
    Ros-Oton, Xavier
    GEOMETRIC MEASURE THEORY AND FREE BOUNDARY PROBLEMS, 2021, 2284 : 37 - 88
  • [30] Sharp regularity for singular obstacle problems
    Damião J. Araújo
    Rafayel Teymurazyan
    Vardan Voskanyan
    Mathematische Annalen, 2023, 387 : 1367 - 1401