Sharp regularity for singular obstacle problems

被引:0
|
作者
Damião J. Araújo
Rafayel Teymurazyan
Vardan Voskanyan
机构
[1] Universidade Federal da Paraíba,UFPB, Department of Mathematics
[2] University of Coimbra,CMUC, Department of Mathematics
来源
Mathematische Annalen | 2023年 / 387卷
关键词
35B65; 35J60; 35J75; 35B33; 49Q20; 49Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sharp local C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document} regularity of solutions for singular obstacle problems, Euler-Lagrange equation of which is given by Δpu=γ(u-φ)γ-1in{u>φ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _p u=\gamma (u-\varphi )^{\gamma -1}\,\text { in }\,\{u>\varphi \}, \end{aligned}$$\end{document}for 0<γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1$$\end{document} and p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}. At the free boundary ∂{u>φ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \{u>\varphi \}$$\end{document}, we prove optimal C1,τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\tau }$$\end{document} regularity of solutions, with τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} given explicitly in terms of p, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and smoothness of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, which is new even in the linear setting.
引用
收藏
页码:1367 / 1401
页数:34
相关论文
共 50 条
  • [1] Sharp regularity for singular obstacle problems
    Araujo, Damiao J.
    Teymurazyan, Rafayel
    Voskanyan, Vardan
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1367 - 1401
  • [2] SHARP REGULARITY FOR DEGENERATE OBSTACLE TYPE PROBLEMS: A GEOMETRIC APPROACH
    Da Silva, Joao Vitor
    Vivas, Hernan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1359 - 1385
  • [3] Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets
    Kuusi, Tuomo
    Mingione, Giuseppe
    Nystrom, Kaj
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (02): : 119 - 151
  • [4] Holder Regularity for Singular Parabolic Obstacle Problems of Porous Medium Type
    Cho, Yumi
    Scheven, Christoph
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (06) : 1671 - 1717
  • [5] Regularity estimates for singular parabolic measure data problems with sharp growth
    Park, Jung-Tae
    Shin, Pilsoo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 316 : 726 - 761
  • [6] Regularity of solutions of obstacle problems
    苏剑
    王立周
    Academic Journal of Xi'an Jiaotong University, 2007, (01) : 7 - 8
  • [7] INTERIOR REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS
    MICHAEL, JH
    ZIEMER, WP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) : 1427 - 1448
  • [8] Regularity for solutions to anisotropic obstacle problems
    HongYa Gao
    Science China Mathematics, 2014, 57 : 111 - 122
  • [9] LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS
    高红亚
    郭静
    左亚丽
    褚玉明
    ActaMathematicaScientia, 2010, 30 (01) : 208 - 214
  • [10] Regularity of Free Boundaries in Obstacle Problems
    Ros-Oton, Xavier
    GEOMETRIC MEASURE THEORY AND FREE BOUNDARY PROBLEMS, 2021, 2284 : 37 - 88