Sharp regularity for singular obstacle problems

被引:1
|
作者
Araujo, Damiao J. [1 ]
Teymurazyan, Rafayel [2 ]
Voskanyan, Vardan [2 ]
机构
[1] Univ Fed Paraiba, Dept Math, UFPB, BR-58059900 Joao Pessoa, Paraiba, Brazil
[2] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
FREE-BOUNDARY; MINIMUM PROBLEM;
D O I
10.1007/s00208-022-02496-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sharp local C-1,C-alpha regularity of solutions for singular obstacle problems, Euler-Lagrange equation of which is given by Delta p(u) = gamma (u - phi)(gamma-1) in {u >phi}, for 0 < gamma < 1 and p >= 2. At the free boundary partial derivative{u > phi}, we prove optimal C1,tau regularity of solutions, with tau given explicitly in terms of p,gamma and smoothness of phi, which is new even in the linear setting.
引用
收藏
页码:1367 / 1401
页数:35
相关论文
共 50 条
  • [1] Sharp regularity for singular obstacle problems
    Damião J. Araújo
    Rafayel Teymurazyan
    Vardan Voskanyan
    Mathematische Annalen, 2023, 387 : 1367 - 1401
  • [2] SHARP REGULARITY FOR DEGENERATE OBSTACLE TYPE PROBLEMS: A GEOMETRIC APPROACH
    Da Silva, Joao Vitor
    Vivas, Hernan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1359 - 1385
  • [3] Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets
    Kuusi, Tuomo
    Mingione, Giuseppe
    Nystrom, Kaj
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (02): : 119 - 151
  • [4] Holder Regularity for Singular Parabolic Obstacle Problems of Porous Medium Type
    Cho, Yumi
    Scheven, Christoph
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (06) : 1671 - 1717
  • [5] Regularity estimates for singular parabolic measure data problems with sharp growth
    Park, Jung-Tae
    Shin, Pilsoo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 316 : 726 - 761
  • [6] Regularity of solutions of obstacle problems
    苏剑
    王立周
    Academic Journal of Xi'an Jiaotong University, 2007, (01) : 7 - 8
  • [7] INTERIOR REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS
    MICHAEL, JH
    ZIEMER, WP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) : 1427 - 1448
  • [8] Regularity for solutions to anisotropic obstacle problems
    HongYa Gao
    Science China Mathematics, 2014, 57 : 111 - 122
  • [9] LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS
    高红亚
    郭静
    左亚丽
    褚玉明
    ActaMathematicaScientia, 2010, 30 (01) : 208 - 214
  • [10] Regularity of Free Boundaries in Obstacle Problems
    Ros-Oton, Xavier
    GEOMETRIC MEASURE THEORY AND FREE BOUNDARY PROBLEMS, 2021, 2284 : 37 - 88