Regularity results for a class of obstacle problems in Heisenberg groups

被引:5
|
作者
Bigolin, Francesco [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Povo, Trento, Italy
关键词
obstacle problem; weak solution; regularity; Heisenberg group; P-HARMONIC FUNCTIONS; EQUATIONS; GRADIENT; C-1; C-ALPHA-REGULARITY; BOUNDARY;
D O I
10.1007/s10492-013-0027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity results for solutions u is an element of HW (1,p) (Omega) to the obstacle problem integral(Omega) A(x, del(H)u)del(H)(v - u) d x >= 0 for all(v) is an element of K-psi, (u) (Omega) such that u >= psi a.e. in Omega, where K-psi, (u) (Omega) = {v is an element of HW (1,p) (Omega): v - u is an element of HW0 (1,p) (Omega)v >= psi a.e in Omega}, in Heisenberg groups H (n) . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. T psi is an element of HWloc1,p (Omega) double right arrow T u is an element of L-loc(p) (Omega), vertical bar del(H)psi vertical bar(p) is an element of L-loc(q) (Omega) double right arrow vertical bar del(H)u vertical bar(p) is an element of L-loc(q) (Omega), where 2 < p < 4, q > 1.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 50 条
  • [41] LOCAL REGULARITY RESULT FOR SOLUTIONS OF OBSTACLE PROBLEMS
    高红亚
    田会英
    Acta Mathematica Scientia, 2004, (01) : 71 - 74
  • [42] On the regularity of the free boundary for quasilinear obstacle problems
    Challal, S.
    Lyaghfouri, A.
    Rodrigues, J. F.
    Teymurazyan, R.
    INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) : 359 - 394
  • [43] On Regularity and Singularity of Free Boundaries in Obstacle Problems
    Lin, Fanghua
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (05) : 645 - 652
  • [44] Local regularity for solutions of anisotropic obstacle problems
    Gao Hongya
    Huang Qiuhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4761 - 4765
  • [45] On Regularity and Singularity of Free Boundaries in Obstacle Problems
    Fanghua LIN Published online August 10
    ChineseAnnalsofMathematics, 2009, 30 (05) : 645 - 652
  • [46] LOCAL REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS WITH WEIGHT
    Gao, Hong-Ya
    Guo, Jing
    Qiao, Jin-Jing
    Liang, Shuang
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 163 - 169
  • [47] Holder regularity for degenerate parabolic obstacle problems
    Boegelein, Verena
    Lukkari, Teemu
    Scheven, Christoph
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 1 - 39
  • [48] REGULARITY OF QUASI-MINIMA AND OBSTACLE PROBLEMS
    ZIEMER, WP
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 44 : 429 - 439
  • [49] Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions
    Andrea Gentile
    Raffaella Giova
    Andrea Torricelli
    Mediterranean Journal of Mathematics, 2022, 19
  • [50] Optimal regularity for supercritical parabolic obstacle problems
    Ros-Oton, Xavier
    Torres-Latorre, Clara
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (03) : 1724 - 1765