FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS

被引:2
|
作者
Shaimardan, Serikbol [1 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Munaytpasov St 5, Astana 010008, Kazakhstan
来源
关键词
Fractional Hardy type inequality; h-derivative; integral operator; h-calculus; h-integral; discrete fractional calculus; sharp constant;
D O I
10.7153/mia-2019-22-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the power weights fractional order Hardy-type inequality in the following form: (integral(infinity)(0)integral(infinity)(0)vertical bar f(x) - f(y)vertical bar(p)/vertical bar x- y vertical bar(1+p alpha)dxdy)(p) <= C(integral(infinity)(0)vertical bar f'(x)vertical bar(p) x((1-)(alpha)p)dx)(p) for 0 < alpha < 1 and 1 < p < infinity in fractional h-discrete calculus, where C =2(1/p)alpha(-1)/(p-p alpha)(1/p). For h-fractional function we prove a discrete analogue of above inequality in fractional h-discrete calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in this case.
引用
收藏
页码:691 / 702
页数:12
相关论文
共 50 条
  • [41] New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel
    Al Qurashi, Maysaa
    Rashid, Saima
    Sultana, Sobia
    Ahmad, Hijaz
    Gepreel, Khaled A.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (02) : 1794 - 1812
  • [42] The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian
    Anoop, V. P.
    Parui, Sanjay
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (01) : 247 - 278
  • [43] The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian
    V. P. Anoop
    Sanjay Parui
    Israel Journal of Mathematics, 2020, 236 : 247 - 278
  • [44] Hardy-type inequalities within fractional derivatives without singular kernel
    Yasemin Başcı
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2018
  • [45] On nabla conformable fractional Hardy-type inequalities on arbitrary time scales
    Ahmed A. El-Deeb
    Samer D. Makharesh
    Eze R. Nwaeze
    Olaniyi S. Iyiola
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [46] Hardy-type inequalities within fractional derivatives without singular kernel
    Basci, Yasemin
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [47] On nabla conformable fractional Hardy-type inequalities on arbitrary time scales
    El-Deeb, Ahmed A.
    Makharesh, Samer D.
    Nwaeze, Eze R.
    Iyiola, Olaniyi S.
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [48] HARDY-TYPE INEQUALITIES FOR FRACTIONAL POWERS OF THE DUNKL-HERMITE OPERATOR
    Ciaurri, Oscar
    Roncal, Luz
    Thangavelu, Sundaram
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (02) : 513 - 544
  • [49] HARDY-TYPE INEQUALITIES FOR THE FRACTIONAL INTEGRAL OPERATOR IN q-ANALYSIS
    Shaimardan, S.
    EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (01): : 84 - 99
  • [50] A Hardy-type inequality in two dimensions
    Kumar, Suket
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 247 - 260