A Hardy-type inequality in two dimensions

被引:3
|
作者
Kumar, Suket [1 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2009年 / 20卷 / 02期
关键词
Hardy inequality; Hardy operator; Strong-type inequality; Weak-type inequality; Boundedness of operators; WEIGHTED NORM INEQUALITIES;
D O I
10.1016/S0019-3577(09)80012-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions are given for a weighted norm inequality for the sum of two-dimensional Hardy-type integral operators with not necessarily non-negative coefficients.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 50 条
  • [1] On a weighted hardy-type inequality
    D. V. Prokhorov
    Doklady Mathematics, 2013, 88 : 687 - 689
  • [2] On a weighted hardy-type inequality
    Prokhorov, D. V.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 687 - 689
  • [3] A Hardy-type inequality for Sugeno Integrals
    Xiao, Li
    Yue, Hu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 23 - 26
  • [4] Note on Sharp Hardy-Type Inequality
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (01) : 31 - 44
  • [5] A relativistic Hardy-type inequality with minimizers
    Fanelli, Luca
    Pizzichillo, Fabio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (08)
  • [6] On a weighted inequality for a Hardy-type operator
    Prokhorov, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) : 208 - 215
  • [7] On a weighted inequality for a Hardy-type operator
    D. V. Prokhorov
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 208 - 215
  • [8] A Hardy-Type Inequality and Its Applications
    Dubinskii, Yu. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 (01) : 106 - 126
  • [9] A Hardy-type inequality and its applications
    Yu. A. Dubinskii
    Proceedings of the Steklov Institute of Mathematics, 2010, 269 : 106 - 126
  • [10] A Hardy-type inequality for fuzzy integrals
    Roman-Flores, H.
    Flores-Franulic, A.
    Chalco-Cano, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 178 - 183