A Hardy-type inequality for fuzzy integrals

被引:41
|
作者
Roman-Flores, H. [1 ]
Flores-Franulic, A. [1 ]
Chalco-Cano, Y. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
fuzzy measure; Sugeno integral; Hardy's inequality;
D O I
10.1016/j.amc.2008.06.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Hardy-type inequality for fuzzy integrals. More precisely, we show that (f(0)(1)f(p)(x)dx)(1/p+1) >= f(0)(1) (F/x)(p) dx, where p >= 1, f : [0, 1] -> [0; infinity) is an integrable function and F(x) = f(0)(x)f(t)dt. An analogous inequality is also obtained on the interval [0; infinity). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 50 条
  • [1] A Hardy-type inequality for Sugeno Integrals
    Xiao, Li
    Yue, Hu
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 23 - 26
  • [2] A sharp Hardy-type inequality of Sugeno integrals
    Hong, Dug Hun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) : 437 - 440
  • [3] On a weighted hardy-type inequality
    D. V. Prokhorov
    Doklady Mathematics, 2013, 88 : 687 - 689
  • [4] On a weighted hardy-type inequality
    Prokhorov, D. V.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 687 - 689
  • [5] General Hardy type inequality for seminormed fuzzy integrals
    Agahi, Hamzeh
    Yaghoobi, M. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 1972 - 1977
  • [6] A Hardy-type inequality in two dimensions
    Kumar, Suket
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 247 - 260
  • [7] Note on Sharp Hardy-Type Inequality
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (01) : 31 - 44
  • [8] A relativistic Hardy-type inequality with minimizers
    Fanelli, Luca
    Pizzichillo, Fabio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (08)
  • [9] On a weighted inequality for a Hardy-type operator
    Prokhorov, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) : 208 - 215
  • [10] On a weighted inequality for a Hardy-type operator
    D. V. Prokhorov
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 208 - 215