A Hardy-type inequality for fuzzy integrals

被引:41
|
作者
Roman-Flores, H. [1 ]
Flores-Franulic, A. [1 ]
Chalco-Cano, Y. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
fuzzy measure; Sugeno integral; Hardy's inequality;
D O I
10.1016/j.amc.2008.06.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Hardy-type inequality for fuzzy integrals. More precisely, we show that (f(0)(1)f(p)(x)dx)(1/p+1) >= f(0)(1) (F/x)(p) dx, where p >= 1, f : [0, 1] -> [0; infinity) is an integrable function and F(x) = f(0)(x)f(t)dt. An analogous inequality is also obtained on the interval [0; infinity). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 50 条
  • [21] HARDY-TYPE INEQUALITY FOR 0 < p < 1 AND HYPODECREASING FUNCTIONS
    Burenkov, V. I.
    Senouci, A.
    Tararykova, T. V.
    EURASIAN MATHEMATICAL JOURNAL, 2010, 1 (03): : 27 - 42
  • [22] A new discrete Hardy-type inequality with kernels and monotone functions
    Aigerim Kalybay
    Lars-Erik Persson
    Ainur Temirkhanova
    Journal of Inequalities and Applications, 2015
  • [23] SECOND-ORDER HARDY-TYPE INEQUALITY AND ITS APPLICATIONS
    Oinarov, Ryskul
    Kalybay, Aigerim
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 237 - 245
  • [24] ON A NEW CLASS OF HARDY-TYPE INEQUALITIES WITH FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2014, 18 (519): : 91 - 106
  • [25] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [26] A Chebyshev type inequality for fuzzy integrals
    Flores-Franulic, A.
    Roman-Flores, H.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1178 - 1184
  • [27] A Jensen type inequality for fuzzy integrals
    Roman-Flores, H.
    Flores-Franulic, A.
    Chalco-Cano, Y.
    INFORMATION SCIENCES, 2007, 177 (15) : 3192 - 3201
  • [28] A convolution type inequality for fuzzy integrals
    Roman-Flores, H.
    Flores-Franulic, A.
    Chalco-Cano, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) : 94 - 99
  • [29] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33
  • [30] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365