A Hardy-type inequality for fuzzy integrals

被引:41
|
作者
Roman-Flores, H. [1 ]
Flores-Franulic, A. [1 ]
Chalco-Cano, Y. [2 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
fuzzy measure; Sugeno integral; Hardy's inequality;
D O I
10.1016/j.amc.2008.06.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Hardy-type inequality for fuzzy integrals. More precisely, we show that (f(0)(1)f(p)(x)dx)(1/p+1) >= f(0)(1) (F/x)(p) dx, where p >= 1, f : [0, 1] -> [0; infinity) is an integrable function and F(x) = f(0)(x)f(t)dt. An analogous inequality is also obtained on the interval [0; infinity). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 183
页数:6
相关论文
共 50 条
  • [41] Stronger Hardy-type paradox based on the Bell inequality and its experimental test
    Yang, Mu
    Meng, Hui-Xian
    Zhou, Jie
    Xu, Zhen-Peng
    Xiao, Ya
    Sun, Kai
    Chen, Jing-Ling
    Xu, Jin-Shi
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [42] A Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator
    Cassano, Biagio
    Pizzichillo, Fabio
    Vega, Luis
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 1 - 18
  • [43] A HARDY-TYPE INEQUALITY WITH AHARONOV-BOHM MAGNETIC FIELD ON THE POINCARE DISK
    Zhu, Li
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 157 - 164
  • [44] Bilateral Hardy-type inequalities
    Mu Fa Chen
    Acta Mathematica Sinica, English Series, 2013, 29 : 1 - 32
  • [45] Some Hardy-type inequalities
    Cheung, WS
    Hanjs, Z
    Pecaric, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 621 - 634
  • [46] A generic functional inequality and Riccati pairs: an alternative approach to Hardy-type inequalities
    Kajanto, Sandor
    Kristaly, Alexandru
    Peter, Ioan Radu
    Zhao, Wei
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3621 - 3663
  • [47] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica,English Series, 2013, (01) : 1 - 32
  • [48] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica, 2013, 29 (01) : 1 - 32
  • [49] Bilateral Hardy-type inequalities
    Chen, Mu Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 1 - 32
  • [50] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646