FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS

被引:2
|
作者
Shaimardan, Serikbol [1 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Munaytpasov St 5, Astana 010008, Kazakhstan
来源
关键词
Fractional Hardy type inequality; h-derivative; integral operator; h-calculus; h-integral; discrete fractional calculus; sharp constant;
D O I
10.7153/mia-2019-22-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the power weights fractional order Hardy-type inequality in the following form: (integral(infinity)(0)integral(infinity)(0)vertical bar f(x) - f(y)vertical bar(p)/vertical bar x- y vertical bar(1+p alpha)dxdy)(p) <= C(integral(infinity)(0)vertical bar f'(x)vertical bar(p) x((1-)(alpha)p)dx)(p) for 0 < alpha < 1 and 1 < p < infinity in fractional h-discrete calculus, where C =2(1/p)alpha(-1)/(p-p alpha)(1/p). For h-fractional function we prove a discrete analogue of above inequality in fractional h-discrete calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in this case.
引用
收藏
页码:691 / 702
页数:12
相关论文
共 50 条
  • [21] Monotonicity results for h-discrete fractional operators and application
    Suwan, Iyad
    Owies, Shahd
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [22] On fractional Hardy-type inequalities in general open sets
    Cinti, Eleonora
    Prinari, Francesca
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [23] On the supercritical fractional diffusion equation with Hardy-type drift
    Kinzebulatov, Damir
    Madou, Kodjo Raphael
    Semenov, Yuliy A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 152 (02): : 401 - 420
  • [24] A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group
    Adimurthi
    Mallick, Arka
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (03) : 917 - 949
  • [25] A NEW h-DISCRETE FRACTIONAL OPERATOR, FRACTIONAL POWER AND FINITE SUMMATION OF HYPERGEOMETRIC POLYNOMIALS
    Khitri-Kazi-Tani, Leila
    Dib, Hacen
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 85 - 96
  • [26] Hardy’s inequality for the fractional powers of a discrete Laplacian
    Ciaurri Ó.
    Roncal L.
    The Journal of Analysis, 2018, 26 (2) : 211 - 225
  • [27] ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tehmeena, Hassan
    Tomovski, Zivorad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 161 - 184
  • [28] A new discrete Hardy-type inequality with kernels and monotone functions
    Kalybay, Aigerim
    Persson, Lars-Erik
    Temirkhanova, Ainur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [29] A new discrete Hardy-type inequality with kernels and monotone functions
    Aigerim Kalybay
    Lars-Erik Persson
    Ainur Temirkhanova
    Journal of Inequalities and Applications, 2015
  • [30] On a weighted hardy-type inequality
    D. V. Prokhorov
    Doklady Mathematics, 2013, 88 : 687 - 689