A NEW h-DISCRETE FRACTIONAL OPERATOR, FRACTIONAL POWER AND FINITE SUMMATION OF HYPERGEOMETRIC POLYNOMIALS

被引:0
|
作者
Khitri-Kazi-Tani, Leila [1 ]
Dib, Hacen [1 ]
机构
[1] Univ Abou Bekr Belkaid Tlemcen, Dept Math, Lab Stat & modelisat aleatoire, Tilimsen, Algeria
关键词
Discrete fractional calculus; trapezoidal operator; hypergeometric polynomials; sectorial operator; fractional power; matrix function; Meixner polynomials;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce the discrete fractional trapezoidal operators T-h(alpha) for alpha is an element of (0, 1) as the fractional power of the classical trapezoidal formula. Consequently, we derive the fractional power of a triangular matrix. As applications, we determine the eigenvectors of T-h(alpha) and a finite summation formula of the product of hypergeometric polynomials.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [1] CONVEXITY IN FRACTIONAL h-DISCRETE CALCULUS
    Atici, Ferhan M.
    Jonnalagadda, Jagan M.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (02): : 313 - 324
  • [2] New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel
    Al Qurashi, Maysaa
    Rashid, Saima
    Sultana, Sobia
    Ahmad, Hijaz
    Gepreel, Khaled A.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (02) : 1794 - 1812
  • [3] An eigenvalue problem in fractional h-discrete calculus
    Atici, F. M.
    Jonnalagadda, J. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 630 - 647
  • [4] An eigenvalue problem in fractional h-discrete calculus
    F. M. Atıcı
    J. M. Jonnalagadda
    Fractional Calculus and Applied Analysis, 2022, 25 : 630 - 647
  • [5] FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS
    Shaimardan, Serikbol
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 691 - 702
  • [6] Monotonicity results for h-discrete fractional operators and application
    Iyad Suwan
    Shahd Owies
    Thabet Abdeljawad
    Advances in Difference Equations, 2018
  • [7] Monotonicity results for h-discrete fractional operators and application
    Suwan, Iyad
    Owies, Shahd
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] Hardy-type inequalities in fractional h-discrete calculus
    Persson, Lars-Erik
    Oinarov, Ryskul
    Shaimardan, Serikbol
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] Hardy-type inequalities in fractional h-discrete calculus
    Lars-Erik Persson
    Ryskul Oinarov
    Serikbol Shaimardan
    Journal of Inequalities and Applications, 2018
  • [10] Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences
    Suwan, Iyad
    Abdeljawad, Thabet
    Jarad, Fahd
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 50 - 59