FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS

被引:2
|
作者
Shaimardan, Serikbol [1 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Munaytpasov St 5, Astana 010008, Kazakhstan
来源
关键词
Fractional Hardy type inequality; h-derivative; integral operator; h-calculus; h-integral; discrete fractional calculus; sharp constant;
D O I
10.7153/mia-2019-22-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the power weights fractional order Hardy-type inequality in the following form: (integral(infinity)(0)integral(infinity)(0)vertical bar f(x) - f(y)vertical bar(p)/vertical bar x- y vertical bar(1+p alpha)dxdy)(p) <= C(integral(infinity)(0)vertical bar f'(x)vertical bar(p) x((1-)(alpha)p)dx)(p) for 0 < alpha < 1 and 1 < p < infinity in fractional h-discrete calculus, where C =2(1/p)alpha(-1)/(p-p alpha)(1/p). For h-fractional function we prove a discrete analogue of above inequality in fractional h-discrete calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in this case.
引用
收藏
页码:691 / 702
页数:12
相关论文
共 50 条
  • [1] Hardy-type inequalities in fractional h-discrete calculus
    Persson, Lars-Erik
    Oinarov, Ryskul
    Shaimardan, Serikbol
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] Hardy-type inequalities in fractional h-discrete calculus
    Lars-Erik Persson
    Ryskul Oinarov
    Serikbol Shaimardan
    Journal of Inequalities and Applications, 2018
  • [3] CONVEXITY IN FRACTIONAL h-DISCRETE CALCULUS
    Atici, Ferhan M.
    Jonnalagadda, Jagan M.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (02): : 313 - 324
  • [4] An eigenvalue problem in fractional h-discrete calculus
    F. M. Atıcı
    J. M. Jonnalagadda
    Fractional Calculus and Applied Analysis, 2022, 25 : 630 - 647
  • [5] An eigenvalue problem in fractional h-discrete calculus
    Atici, F. M.
    Jonnalagadda, J. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 630 - 647
  • [6] ON SOME HARDY-TYPE INEQUALITIES FOR FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 438 - 457
  • [7] WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 77 - 91
  • [8] Discrete Gruss type inequality on fractional calculus
    Akin, Elvan
    Asliyuce, Serkan
    Guvenilir, Ayse Feza
    Kaymakcalan, Billur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [9] A fractional order Hardy inequality
    Dyda, B
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (02) : 575 - 588
  • [10] HARDY INEQUALITY OF FRACTIONAL ORDER
    Gurka, Petr
    Opic, Bohumir
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 9 - 15