FRACTIONAL ORDER HARDY-TYPE INEQUALITY IN FRACTIONAL h-DISCRETE CALCULUS

被引:2
|
作者
Shaimardan, Serikbol [1 ]
机构
[1] LN Gumilyev Eurasian Natl Univ, Munaytpasov St 5, Astana 010008, Kazakhstan
来源
关键词
Fractional Hardy type inequality; h-derivative; integral operator; h-calculus; h-integral; discrete fractional calculus; sharp constant;
D O I
10.7153/mia-2019-22-47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the power weights fractional order Hardy-type inequality in the following form: (integral(infinity)(0)integral(infinity)(0)vertical bar f(x) - f(y)vertical bar(p)/vertical bar x- y vertical bar(1+p alpha)dxdy)(p) <= C(integral(infinity)(0)vertical bar f'(x)vertical bar(p) x((1-)(alpha)p)dx)(p) for 0 < alpha < 1 and 1 < p < infinity in fractional h-discrete calculus, where C =2(1/p)alpha(-1)/(p-p alpha)(1/p). For h-fractional function we prove a discrete analogue of above inequality in fractional h-discrete calculus, is proved and discussed. Moreover, we prove that the same constant is sharp also in this case.
引用
收藏
页码:691 / 702
页数:12
相关论文
共 50 条
  • [31] On a weighted hardy-type inequality
    Prokhorov, D. V.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 687 - 689
  • [32] FRACTIONAL HARDY-TYPE INEQUALITIES IN DOMAINS WITH UNIFORMLY FAT COMPLEMENT
    Edmunds, David E.
    Hurri-Syrjanen, Ritva
    Vahakangas, Antti V.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (03) : 897 - 907
  • [33] On the fractional powers of a Schrödinger operator with a Hardy-type potential
    Siclari, Giovanni
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (02) : 460 - 507
  • [34] Hardy-Type p-Laplacian Fractional Differential Equations
    Nyamoradi, Nemat
    Sousa, J. Vanterler da C.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6469 - 6476
  • [35] On innovations of the multivariable fractional Hardy-type inequalities on time scales
    Akin, Lutfi
    Zeren, Yusuf
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02): : 415 - 422
  • [36] ON THE FRACTIONAL ORDER WEIGHTED HARDY INEQUALITY FOR MONOTONE FUNCTIONS
    Mamedov, Farman I.
    Mammadli, Sayali
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2016, 42 (02): : 257 - 264
  • [37] On an overdetermined weighted differential inequality of Hardy-type of second order
    Adiyeva, A. Zh
    Baiarystanov, A. O.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 105 (01): : 46 - 58
  • [38] FRACTIONAL HARDY TYPE INEQUALITIES VIA CONFORMABLE CALCULUS
    Saker, S. H.
    O'Regan, D.
    Kenawy, M. R.
    Agarwal, R. P.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2018, 73 : 131 - 140
  • [39] SECOND-ORDER HARDY-TYPE INEQUALITY AND ITS APPLICATIONS
    Oinarov, Ryskul
    Kalybay, Aigerim
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 237 - 245
  • [40] Discrete Hardy-type Inequalities
    Liao, Zhong-Wei
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 805 - 834