Homogenization of fully overdamped Frenkel-Kontorova models

被引:31
|
作者
Forcadel, N. [2 ,3 ,4 ]
Imbert, C. [1 ]
Monneau, R. [2 ]
机构
[1] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[2] Paris Est ENPC, CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Polytech, CMAP INRIA Futurs, Projet Commands, F-91128 Palaiseau, France
[4] UMA, ENSTA, F-75739 Paris 15, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Hull function; Cumulative distribution function; Slepcev formulation; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; DEVILS STAIRCASE;
D O I
10.1016/j.jde.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is an infinite system of coupled first-order ODEs. Each ODE represents the microscopic evolution of one particle interacting with its neighbors and Submitted to a fixed periodic potential. After a proper rescaling, a macroscopic model describing the evolution of densities of particles is obtained. We get this homogenization result for a general class of Frenkel-Kontorova models. The proof is based on the construction of suitable hull functions in the framework of viscosity solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1057 / 1097
页数:41
相关论文
共 50 条
  • [1] Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models
    Al Haj, M.
    Forcadel, N.
    Monneau, R.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) : 45 - 99
  • [2] HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6187 - 6227
  • [3] Diffusion as a singular homogenization of the Frenkel-Kontorova model
    Alibaud, N.
    Briani, A.
    Monneaue, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 785 - 815
  • [4] GENERALIZED FRENKEL-KONTOROVA MODELS
    HU, BB
    LIN, B
    SHI, JC
    PHYSICA A, 1994, 205 (1-3): : 420 - 442
  • [5] Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel–Kontorova Models
    M. Al Haj
    N. Forcadel
    R. Monneau
    Archive for Rational Mechanics and Analysis, 2013, 210 : 45 - 99
  • [6] Rotation number of the overdamped Frenkel-Kontorova model with ac-driving
    Hu, BB
    Qin, WX
    Zheng, ZG
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (3-4) : 172 - 190
  • [7] Discommensuration theory and shadowing in Frenkel-Kontorova models
    Baesens, C.
    MacKay, R. S.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 179 - 184
  • [8] Gradient dynamics of tilted Frenkel-Kontorova models
    Baesens, C
    MacKay, RS
    NONLINEARITY, 1998, 11 (04) : 949 - 964
  • [9] The Frenkel-Kontorova Model
    Floría, LM
    Baesens, C
    Gómez-Gardeñes, J
    DYNAMICS OF COUPLED MAP LATTICES AND OF RELATED SPATIALLY EXTENDED SYSTEMS, 2005, 671 : 209 - 240
  • [10] DYNAMICS OF UNHARMONIC CHAINS IN FRENKEL-KONTOROVA MODELS
    BEKLEMISHEV, SA
    KLOCHIKHIN, VL
    FIZIKA TVERDOGO TELA, 1995, 37 (01): : 150 - 159