Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel–Kontorova Models

被引:0
|
作者
M. Al Haj
N. Forcadel
R. Monneau
机构
[1] CERMICS-ENPC,
[2] Ceremade,undefined
[3] Université Paris-Dauphine,undefined
[4] CERMICS-ENPC,undefined
关键词
Viscosity Solution; Travel Wave Solution; Comparison Principle; Strong Maximum Principle; Strict Monotonicity;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the existence and the uniqueness of traveling waves for a discrete reaction–diffusion equation with bistable nonlinearity, namely a generalization of the fully overdamped Frenkel–Kontorova model. This model consists of a system of ODEs which describes the dynamics of crystal defects in lattice solids. Under very weak assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.
引用
收藏
页码:45 / 99
页数:54
相关论文
共 50 条
  • [1] Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models
    Al Haj, M.
    Forcadel, N.
    Monneau, R.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) : 45 - 99
  • [2] Homogenization of fully overdamped Frenkel-Kontorova models
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 1057 - 1097
  • [3] Existence and Uniqueness of Traveling Wave for Accelerated Frenkel–Kontorova Model
    N. Forcadel
    A. Ghorbel
    S. Walha
    Journal of Dynamics and Differential Equations, 2014, 26 : 1133 - 1169
  • [4] Existence and Uniqueness of Traveling Wave for Accelerated Frenkel-Kontorova Model
    Forcadel, N.
    Ghorbel, A.
    Walha, S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) : 1133 - 1169
  • [5] EXISTENCE OF SUPERSONIC TRAVELING WAVES FOR THE FRENKEL-KONTOROVA MODEL
    Issa, S.
    Jazar, M.
    Monneau, R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (3-4) : 321 - 353
  • [6] Traveling Waves in the Underdamped Frenkel-Kontorova Model
    Li, Hengyan
    Liu, Shaowei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [7] Stability of traveling waves in a driven Frenkel?Kontorova model
    Vainchtein, Anna
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Xu, Haitao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
  • [8] ON THE EXISTENCE OF SOLUTIONS FOR THE FRENKEL-KONTOROVA MODELS ON QUASI-CRYSTALS
    Du, Jianxing
    Su, Xifeng
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4177 - 4198
  • [9] EXISTENCE AND UNIQUENESS OF TRAVELING WAVES FOR A NEURAL-NETWORK
    ERMENTROUT, GB
    MCLEOD, JB
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 461 - 478
  • [10] GENERALIZED FRENKEL-KONTOROVA MODELS
    HU, BB
    LIN, B
    SHI, JC
    PHYSICA A, 1994, 205 (1-3): : 420 - 442