Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models

被引:13
|
作者
Al Haj, M. [1 ]
Forcadel, N.
Monneau, R. [2 ]
机构
[1] CERMICS ENPC, Marne De Vallee 2, France
[2] CERMICS ENPC, Marne La Vallee 2, France
关键词
BISTABLE DYNAMICS; FRONT SOLUTIONS; LATTICE; EQUATIONS; MEDIA;
D O I
10.1007/s00205-013-0641-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and the uniqueness of traveling waves for a discrete reaction-diffusion equation with bistable nonlinearity, namely a generalization of the fully overdamped Frenkel-Kontorova model. This model consists of a system of ODEs which describes the dynamics of crystal defects in lattice solids. Under very weak assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.
引用
收藏
页码:45 / 99
页数:55
相关论文
共 50 条
  • [1] Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel–Kontorova Models
    M. Al Haj
    N. Forcadel
    R. Monneau
    Archive for Rational Mechanics and Analysis, 2013, 210 : 45 - 99
  • [2] Homogenization of fully overdamped Frenkel-Kontorova models
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 1057 - 1097
  • [3] EXISTENCE OF SUPERSONIC TRAVELING WAVES FOR THE FRENKEL-KONTOROVA MODEL
    Issa, S.
    Jazar, M.
    Monneau, R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (3-4) : 321 - 353
  • [4] Existence and Uniqueness of Traveling Wave for Accelerated Frenkel-Kontorova Model
    Forcadel, N.
    Ghorbel, A.
    Walha, S.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) : 1133 - 1169
  • [5] Traveling Waves in the Underdamped Frenkel-Kontorova Model
    Li, Hengyan
    Liu, Shaowei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [6] Existence and Uniqueness of Traveling Wave for Accelerated Frenkel–Kontorova Model
    N. Forcadel
    A. Ghorbel
    S. Walha
    Journal of Dynamics and Differential Equations, 2014, 26 : 1133 - 1169
  • [7] GENERALIZED FRENKEL-KONTOROVA MODELS
    HU, BB
    LIN, B
    SHI, JC
    PHYSICA A, 1994, 205 (1-3): : 420 - 442
  • [8] ON THE EXISTENCE OF SOLUTIONS FOR THE FRENKEL-KONTOROVA MODELS ON QUASI-CRYSTALS
    Du, Jianxing
    Su, Xifeng
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4177 - 4198
  • [9] Travelling waves for a Frenkel-Kontorova chain
    Buffoni, Boris
    Schwetlick, Hartmut
    Zimmer, Johannes
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) : 2317 - 2342
  • [10] Rotation number of the overdamped Frenkel-Kontorova model with ac-driving
    Hu, BB
    Qin, WX
    Zheng, ZG
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (3-4) : 172 - 190