Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel-Kontorova Models

被引:13
|
作者
Al Haj, M. [1 ]
Forcadel, N.
Monneau, R. [2 ]
机构
[1] CERMICS ENPC, Marne De Vallee 2, France
[2] CERMICS ENPC, Marne La Vallee 2, France
关键词
BISTABLE DYNAMICS; FRONT SOLUTIONS; LATTICE; EQUATIONS; MEDIA;
D O I
10.1007/s00205-013-0641-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence and the uniqueness of traveling waves for a discrete reaction-diffusion equation with bistable nonlinearity, namely a generalization of the fully overdamped Frenkel-Kontorova model. This model consists of a system of ODEs which describes the dynamics of crystal defects in lattice solids. Under very weak assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.
引用
收藏
页码:45 / 99
页数:55
相关论文
共 50 条
  • [21] Equilibrium Configurations for Generalized Frenkel-Kontorova Models on Quasicrystals
    Trevino, Rodrigo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 1 - 17
  • [22] A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices
    Aigner, AA
    Champneys, AR
    Rothos, VM
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 186 (3-4) : 148 - 170
  • [23] THE CLASSICAL STATISTICAL-MECHANICS OF FRENKEL-KONTOROVA MODELS
    MACKAY, RS
    JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 45 - 67
  • [24] Stability of traveling waves in a driven Frenkel?Kontorova model
    Vainchtein, Anna
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Xu, Haitao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
  • [25] Pinning and phonon localization in Frenkel-Kontorova models on quasiperiodic substrates
    van Erp, TS
    Fasolino, A
    Radulescu, O
    Janssen, T
    PHYSICAL REVIEW B, 1999, 60 (09): : 6522 - 6528
  • [26] Frenkel-Kontorova models, pinned particle configurations, and Burgers shocks
    Mungan, Muhittin
    Yolcu, Cem
    PHYSICAL REVIEW B, 2010, 81 (22):
  • [27] Emergent friction in two-dimensional Frenkel-Kontorova models
    Norell, Jesper
    Fasolino, Annalisa
    de Wijn, Astrid S.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [28] HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES
    Forcadel, N.
    Imbert, C.
    Monneau, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6187 - 6227
  • [29] The Transport Speed and Optimal Work in Pulsating Frenkel-Kontorova Models
    Rabar, Braslav
    Slijepcevic, Sinisa
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (02) : 399 - 423
  • [30] Calibrated Configurations for Frenkel-Kontorova Type Models in Almost Periodic Environments
    Garibaldi, Eduardo
    Petite, Samuel
    Thieullen, Philippe
    ANNALES HENRI POINCARE, 2017, 18 (09): : 2905 - 2943