Homogenization of fully overdamped Frenkel-Kontorova models

被引:31
|
作者
Forcadel, N. [2 ,3 ,4 ]
Imbert, C. [1 ]
Monneau, R. [2 ]
机构
[1] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[2] Paris Est ENPC, CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Polytech, CMAP INRIA Futurs, Projet Commands, F-91128 Palaiseau, France
[4] UMA, ENSTA, F-75739 Paris 15, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Hull function; Cumulative distribution function; Slepcev formulation; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; DEVILS STAIRCASE;
D O I
10.1016/j.jde.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is an infinite system of coupled first-order ODEs. Each ODE represents the microscopic evolution of one particle interacting with its neighbors and Submitted to a fixed periodic potential. After a proper rescaling, a macroscopic model describing the evolution of densities of particles is obtained. We get this homogenization result for a general class of Frenkel-Kontorova models. The proof is based on the construction of suitable hull functions in the framework of viscosity solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1057 / 1097
页数:41
相关论文
共 50 条
  • [41] Farey fractions and the Frenkel-Kontorova model
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICAL REVIEW E, 1997, 55 (03): : 2628 - 2631
  • [42] Synchronization in the Frenkel-Kontorova type system
    Yang, Yang
    Wang, Cang-Long
    Jiang, Hong
    Chen, Jian-Min
    Duan, Wen-Shan
    PHYSICA SCRIPTA, 2012, 86 (01)
  • [43] SOLUTION TO FRENKEL-KONTOROVA DISLOCATION MODEL
    HOBART, R
    CELLI, V
    JOURNAL OF APPLIED PHYSICS, 1962, 33 (01) : 60 - &
  • [44] GLOBAL UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL
    BIHAM, O
    MUKAMEL, D
    PHYSICAL REVIEW A, 1989, 39 (10): : 5326 - 5335
  • [45] The ground state of the Frenkel-Kontorova model
    Babushkin, A. Yu.
    Abkaryan, A. K.
    Dobronets, B. S.
    Krasikov, V. S.
    Filonov, A. N.
    PHYSICS OF THE SOLID STATE, 2016, 58 (09) : 1834 - 1845
  • [46] Heat conduction in the Frenkel-Kontorova model
    Hu, BB
    Yang, L
    CHAOS, 2005, 15 (01)
  • [47] Nonlinear dynamics of the Frenkel-Kontorova model
    Braun, OM
    Kivshar, YS
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2): : 1 - 108
  • [48] Farey fractions and the Frenkel-Kontorova model
    Phys Rev E., 3-A (2628):
  • [49] Entanglement of solitons in the Frenkel-Kontorova model
    Marcovitch, S.
    Reznik, B.
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [50] PROPERTIES OF SOLITONS IN THE FRENKEL-KONTOROVA MODEL
    JOOS, B
    SOLID STATE COMMUNICATIONS, 1982, 42 (10) : 709 - 713