Homogenization of fully overdamped Frenkel-Kontorova models

被引:31
|
作者
Forcadel, N. [2 ,3 ,4 ]
Imbert, C. [1 ]
Monneau, R. [2 ]
机构
[1] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[2] Paris Est ENPC, CERMICS, F-77455 Marne La Vallee 2, France
[3] Ecole Polytech, CMAP INRIA Futurs, Projet Commands, F-91128 Palaiseau, France
[4] UMA, ENSTA, F-75739 Paris 15, France
关键词
Particle systems; Periodic homogenization; Frenkel-Kontorova models; Hamilton-Jacobi equations; Hull function; Cumulative distribution function; Slepcev formulation; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; DEVILS STAIRCASE;
D O I
10.1016/j.jde.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fully overdamped Frenkel-Kontorova model. This is an infinite system of coupled first-order ODEs. Each ODE represents the microscopic evolution of one particle interacting with its neighbors and Submitted to a fixed periodic potential. After a proper rescaling, a macroscopic model describing the evolution of densities of particles is obtained. We get this homogenization result for a general class of Frenkel-Kontorova models. The proof is based on the construction of suitable hull functions in the framework of viscosity solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1057 / 1097
页数:41
相关论文
共 50 条
  • [31] CROWDIONS USING THE FRENKEL-KONTOROVA MODEL
    KOEHLER, J
    PHYSICAL REVIEW B, 1978, 18 (10): : 5333 - 5339
  • [32] DISCRETENESS EFFECTS IN THE FRENKEL-KONTOROVA SYSTEM
    MUNAKATA, T
    ISHIMORI, Y
    PHYSICA B & C, 1979, 98 (1-2): : 68 - 73
  • [33] Driven kink in the Frenkel-Kontorova model
    Braun, OM
    Hu, BB
    Zeltser, A
    PHYSICAL REVIEW E, 2000, 62 (03): : 4235 - 4245
  • [34] Dissipative dynamics of the Frenkel-Kontorova model
    Floria, LM
    Mazo, JJ
    ADVANCES IN PHYSICS, 1996, 45 (06) : 505 - 598
  • [35] FRENKEL-KONTOROVA MODEL WITH ANHARMONIC INTERACTIONS
    MILCHEV, A
    PHYSICAL REVIEW B, 1986, 33 (03): : 2062 - 2065
  • [36] FRENKEL-KONTOROVA MODEL WITH TODA INTERACTIONS
    LIN, B
    HU, B
    JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (5-6) : 1047 - 1068
  • [37] Unorthodox analysis of the Frenkel-Kontorova model
    Universitaet Oldenburg, Oldenburg, Germany
    Phys A Stat Theor Phys, 1-2 (266-284):
  • [38] A model for a driven Frenkel-Kontorova chain
    Quapp, Wolfgang
    Bofill, Josep Maria
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (05):
  • [39] Travelling waves for a Frenkel-Kontorova chain
    Buffoni, Boris
    Schwetlick, Hartmut
    Zimmer, Johannes
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) : 2317 - 2342
  • [40] Frenkel-Kontorova model with pinning cusps
    Kao, HC
    Lee, SC
    Tzeng, WJ
    PHYSICA D, 1997, 107 (01): : 30 - 42