Sequences not containing long zero-sum subsequences

被引:7
|
作者
Gao, WD [1 ]
Zhuang, JJ
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Dalian Univ Technol, Inst Math, Dalian 116024, Peoples R China
关键词
D O I
10.1016/j.ejc.2005.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group (written additively), and let D(G) denote the Davenport's constant of G, i.e. the smallest integer d such that every sequence of d elements (repetition allowed) in G contains a nonempty zero-sum subsequence. Let S be a sequence of elements in G with \S\ >= D(G). We say S is a normal sequence if S contains no zero-sum subsequence of length larger than \S\ - D(G) + 1. In this paper we obtain some results on the structure of normal sequences for arbitrary G. If G = C-n + C-n and n satisfies some well-investigated property, we determine all normal sequences. Applying these results, we obtain correspondingly some results on the structure of the sequence S in G of length \S\ = \G\ + D(G) - 2 and S contains no zero-sum subsequence of length \G\. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:777 / 787
页数:11
相关论文
共 50 条
  • [31] Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)
    Yves Edel
    Designs, Codes and Cryptography, 2008, 47 : 125 - 134
  • [32] Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)
    Edel, Yves
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 47 (1-3) : 125 - 134
  • [33] Long unsplittable zero-sum sequences over a finite cyclic group
    Yuan, Pingzhi
    Li, Yuanlin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (04) : 979 - 993
  • [34] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Weidong Gao
    Siao Hong
    Wanzhen Hui
    Xue Li
    Qiuyu Yin
    Pingping Zhao
    Periodica Mathematica Hungarica, 2022, 85 : 52 - 71
  • [35] On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups
    Gao, Weidong
    Li, Yuanlin
    Yuan, Pingzhi
    Zhuang, Jujuan
    ARCHIV DER MATHEMATIK, 2015, 105 (04) : 361 - 370
  • [36] Long minimal zero-sum sequences over a finite subset of Z
    Deng, Guixin
    Zeng, Xiangneng
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 67 : 78 - 86
  • [37] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 52 - 71
  • [38] On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups
    Weidong Gao
    Yuanlin Li
    Pingzhi Yuan
    Jujuan Zhuang
    Archiv der Mathematik, 2015, 105 : 361 - 370
  • [39] Minimal zero-sum sequences in Cn ⊕ Cn
    Lettl, Guenter
    Schmid, Wolfgang A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (03) : 742 - 753
  • [40] The structure of maximal zero-sum free sequences
    Bhowmik, Gautami
    Halupczok, Immanuel
    Schlage-Puchta, Jan-Christoph
    ACTA ARITHMETICA, 2010, 143 (01) : 21 - 50