We present a new construction for sequences in the finite abelian group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{n}^r$$\end{document} without zero-sum subsequences of length n, for odd n. This construction improves the maximal known cardinality of such sequences for r > 4 and leads to simpler examples for r > 2. Moreover we explore a link to ternary affine caps and prove that the size of the second largest complete caps in AG(5, 3) is 42.
机构:
Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Guangzhou 510275, Peoples R China
Zeng, Xiangneng
Yuan, Pingzhi
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaSun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Guangzhou 510275, Peoples R China
Yuan, Pingzhi
ELECTRONIC JOURNAL OF COMBINATORICS,
2023,
30
(04):