We present a new construction for sequences in the finite abelian group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_{n}^r$$\end{document} without zero-sum subsequences of length n, for odd n. This construction improves the maximal known cardinality of such sequences for r > 4 and leads to simpler examples for r > 2. Moreover we explore a link to ternary affine caps and prove that the size of the second largest complete caps in AG(5, 3) is 42.
机构:
Southwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R ChinaSouthwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R China
Han, Dongchun
Zhang, Hanbin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaSouthwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R China
机构:
Department of Computer Science and Technology, University of Petroleum, Changping, Beijing 102200, Shuiku RoadDepartment of Computer Science and Technology, University of Petroleum, Changping, Beijing 102200, Shuiku Road
Gao W.
Geroldinger A.
论文数: 0引用数: 0
h-index: 0
机构:
Institut für Mathematik, Karl-Franzens Universität, 8010 GrazDepartment of Computer Science and Technology, University of Petroleum, Changping, Beijing 102200, Shuiku Road
机构:
Ecole Polytech, CNRS, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, FranceEcole Polytech, CNRS, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China