MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS

被引:1
|
作者
Zhuang, Jujuan [1 ]
Yuan, Pingzhi [2 ]
机构
[1] Dalian Maritime Univ, Dept Math, Dalian 116024, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 03期
关键词
Minimal zero-sum sequence; Finite cyclic group;
D O I
10.11650/twjm/1500405455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-n be the cyclic group of order n, n >= 20, and let S Pi(k)(i=1) gi be a minimal zero-sum sequence of elements in C-n. We say that S is insplitable if for any g(i) is an element of S and any two elements x, y is an element of C-n satisfying x + y = g(i), Sg(i)(-1)xy is not a minimal zero-sum sequence any more. We define Index(S) = min((m,n)=1){Sigma(k)(i=1)vertical bar mg(i)vertical bar}, where vertical bar x vertical bar denotes the least positive inverse image under homomorphism from the additive group of integers Z onto C-n. In this paper we prove that for an insplitable minimal zero-sum sequence S, if Index(S) = 2n, then vertical bar S vertical bar <= left perpendicular n/1 right perpendicular + 1.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条