Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)

被引:0
|
作者
Yves Edel
机构
[1] Mathematisches Institut der Universität,
来源
关键词
Zero-sum sequences; Finite abelian groups; Affine caps; 11B50; 20K01; 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new construction for sequences in the finite abelian group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{n}^r$$\end{document} without zero-sum subsequences of length n, for odd n. This construction improves the maximal known cardinality of such sequences for r > 4 and leads to simpler examples for r > 2. Moreover we explore a link to ternary affine caps and prove that the size of the second largest complete caps in AG(5, 3) is 42.
引用
收藏
页码:125 / 134
页数:9
相关论文
共 50 条
  • [21] MINIMAL ZERO-SUM SEQUENCES OF LENGTH FIVE OVER CYCLIC GROUPS OF PRIME POWER ORDER
    Xia, Li-Meng
    Li, Yuanlin
    Peng, Jiangtao
    ARS COMBINATORIA, 2017, 135 : 369 - 390
  • [22] SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS
    Qu, Yongke
    Xia, Xingwu
    Xue, Lin
    Zhong, Qinghai
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 119 - 127
  • [23] ON SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES IN ABELIAN GROUPS OF RANK TWO
    Peng, Jiangtao
    Hui, Wanzhen
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 48 (02): : 133 - 153
  • [24] Zero-sum subsequences in bounded-sum {-1,1}-sequences
    Caro, Yair
    Hansberg, Adriana
    Montejano, Amanda
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 : 387 - 419
  • [25] ON MINIMAL ZERO-SUM SEQUENCES OF LENGTH FOUR OVER CYCLIC GROUPS
    Zeng, Xiangneng
    Qi, Xiaoxia
    COLLOQUIUM MATHEMATICUM, 2017, 146 (02) : 157 - 163
  • [26] On short zero-sum subsequences over p-groups
    Schmid, W. A.
    Zhuang, J. J.
    ARS COMBINATORIA, 2010, 95 : 343 - 352
  • [27] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Weidong Gao
    Siao Hong
    Wanzhen Hui
    Xue Li
    Qiuyu Yin
    Pingping Zhao
    Periodica Mathematica Hungarica, 2022, 85 : 52 - 71
  • [28] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 52 - 71
  • [29] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group II
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    JOURNAL OF NUMBER THEORY, 2022, 241 : 738 - 760
  • [30] Zero-sum subsets of decomposable sets in Abelian groups
    Banakh, T.
    Raysky, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (01): : 15 - 25