Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group

被引:0
|
作者
Weidong Gao
Siao Hong
Wanzhen Hui
Xue Li
Qiuyu Yin
Pingping Zhao
机构
[1] LPMC-TJKLC Nankai University,Center for Combinatorics
[2] Tianjin Chengjian University,School of Science
来源
关键词
Zero-sum sequence; Zero-sum invariant; Abelian group; 11B30; 11B13; 11B50; 11P70; 20K01;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an additive finite abelian group. For a sequence T over G and g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}, let vg(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {v}_{g}(T)$$\end{document} denote the multiplicity of g in T. Let B(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(G)$$\end{document} denote the set of all zero-sum sequences over G. For Ω⊂B(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathcal {B}(G)$$\end{document}, let dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document} be the smallest integer t such that every sequence S over G of length |S|≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|\ge t$$\end{document} has a subsequence in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The invariant dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document} was formulated recently in [3] to take a unified look at zero-sum invariants, it led to the first results there, and some open problems were formulated as well. In this paper, we make some further study on dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document}. Let q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}'(G)$$\end{document} be the smallest integer t such that every sequence S over G of length |S|≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|\ge t$$\end{document} has two nonempty zero-sum subsequences, say T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1}$$\end{document} and T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2}$$\end{document}, having different forms, i.e., vg(T1)≠vg(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {v}_{g}(T_{1})\ne \mathrm {v}_{g}(T_{2})$$\end{document} for some g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}. Let q(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)$$\end{document} be the smallest integer t such that ⋂dΩ(G)=tΩ=∅.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \bigcap _{{\mathsf {d}}_{\Omega }(G)=t}\Omega =\emptyset . \end{aligned}$$\end{document}The invariants q(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)$$\end{document} and q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}'(G)$$\end{document} were also introduced in [3]. We prove, among other results, that q(G)=q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)={\mathsf {q}}'(G)$$\end{document} in fact.
引用
收藏
页码:52 / 71
页数:19
相关论文
共 50 条
  • [1] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 52 - 71
  • [2] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group II
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    JOURNAL OF NUMBER THEORY, 2022, 241 : 738 - 760
  • [3] ON TINY ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS
    Gao, Weidong
    Hui, Wanzhen
    Li, Xue
    Qin, Xiaoer
    Yin, Qiuyu
    COLLOQUIUM MATHEMATICUM, 2022, 168 (02) : 311 - 324
  • [4] Two zero-sum invariants on finite abelian groups
    Fan, Yushuang
    Gao, Weidong
    Wang, Linlin
    Zhong, Qinghai
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1331 - 1337
  • [5] ON SEQUENCES OVER A FINITE ABELIAN GROUP WITH ZERO-SUM SUBSEQUENCES OF FORBIDDEN LENGTHS
    Gao, Weidong
    Li, Yuanlin
    Zhao, Pingping
    Zhuang, Jujuan
    COLLOQUIUM MATHEMATICUM, 2016, 144 (01) : 31 - 44
  • [6] On short zero-sum subsequences of zero-sum sequences
    Fan, Yushuang
    Gao, Weidong
    Wang, Guoqing
    Zhong, Qinghai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [7] Zero-sum invariants on finite abelian groups with large exponent
    Han, Dongchun
    Zhang, Hanbin
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [8] On Zero-Sum and Almost Zero-Sum Subgraphs Over
    Caro, Yair
    Yuster, Raphael
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 49 - 63
  • [9] A RECIPROCITY ON FINITE ABELIAN GROUPS INVOLVING ZERO-SUM SEQUENCES
    Han, Dongchun
    Zhang, Hanbin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1077 - 1095
  • [10] SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS
    Qu, Yongke
    Xia, Xingwu
    Xue, Lin
    Zhong, Qinghai
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 119 - 127