Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group

被引:0
|
作者
Weidong Gao
Siao Hong
Wanzhen Hui
Xue Li
Qiuyu Yin
Pingping Zhao
机构
[1] LPMC-TJKLC Nankai University,Center for Combinatorics
[2] Tianjin Chengjian University,School of Science
来源
关键词
Zero-sum sequence; Zero-sum invariant; Abelian group; 11B30; 11B13; 11B50; 11P70; 20K01;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be an additive finite abelian group. For a sequence T over G and g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}, let vg(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {v}_{g}(T)$$\end{document} denote the multiplicity of g in T. Let B(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(G)$$\end{document} denote the set of all zero-sum sequences over G. For Ω⊂B(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathcal {B}(G)$$\end{document}, let dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document} be the smallest integer t such that every sequence S over G of length |S|≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|\ge t$$\end{document} has a subsequence in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The invariant dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document} was formulated recently in [3] to take a unified look at zero-sum invariants, it led to the first results there, and some open problems were formulated as well. In this paper, we make some further study on dΩ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {d}_{\Omega }(G)$$\end{document}. Let q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}'(G)$$\end{document} be the smallest integer t such that every sequence S over G of length |S|≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|\ge t$$\end{document} has two nonempty zero-sum subsequences, say T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1}$$\end{document} and T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{2}$$\end{document}, having different forms, i.e., vg(T1)≠vg(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {v}_{g}(T_{1})\ne \mathrm {v}_{g}(T_{2})$$\end{document} for some g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}. Let q(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)$$\end{document} be the smallest integer t such that ⋂dΩ(G)=tΩ=∅.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \bigcap _{{\mathsf {d}}_{\Omega }(G)=t}\Omega =\emptyset . \end{aligned}$$\end{document}The invariants q(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)$$\end{document} and q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}'(G)$$\end{document} were also introduced in [3]. We prove, among other results, that q(G)=q′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {q}}(G)={\mathsf {q}}'(G)$$\end{document} in fact.
引用
收藏
页码:52 / 71
页数:19
相关论文
共 50 条
  • [21] MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS
    Zhuang, Jujuan
    Yuan, Pingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1007 - 1015
  • [22] On subset sums of zero-sum free sets of abelian groups
    Peng, Jiangtao
    Hui, Wanzhen
    Li, Yuanlin
    Sun, Fang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (03) : 645 - 654
  • [23] Long minimal zero-sum sequences over a finite subset of Z
    Deng, Guixin
    Zeng, Xiangneng
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 67 : 78 - 86
  • [24] On the index of minimal zero-sum sequences over finite cyclic groups
    Yuan, Pingzhi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (08) : 1545 - 1551
  • [25] A note on minimal zero-sum sequences over Z
    Sissokho, Papa A.
    ACTA ARITHMETICA, 2014, 166 (03) : 279 - 288
  • [26] Minimal zero-sum sequences over [-m, n]
    Zeng, Xiangneng
    Deng, Guixin
    JOURNAL OF NUMBER THEORY, 2019, 203 : 230 - 241
  • [27] On zero-sum sequences of prescribed length
    Gao W.
    Thangadurai R.
    aequationes mathematicae, 2006, 72 (3) : 201 - 212
  • [28] Linear Recurring Sequences over Zero-Sum Semirings
    Ngom, Lamine
    Diankha, Omar
    Sow, Djiby
    NON-ASSOCIATIVE AND NON-COMMUTATIVE ALGEBRA AND OPERATOR THEORY, NANCAOT, 2016, 160 : 227 - 238
  • [29] On subsequence sums of a zero-sum free sequence over finite abelian groups
    Peng, Jiangtao
    Li, Yuanlin
    Liu, Chao
    Huang, Meiling
    JOURNAL OF NUMBER THEORY, 2020, 217 : 193 - 217
  • [30] Zero-sum problems in finite abelian groups and affine caps
    Edel, Yves
    Elsholtz, Christian
    Geroldinger, Alfred
    Kubertin, Silke
    Rackham, Laurence
    QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 : 159 - 186