Sequences not containing long zero-sum subsequences

被引:7
|
作者
Gao, WD [1 ]
Zhuang, JJ
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Dalian Univ Technol, Inst Math, Dalian 116024, Peoples R China
关键词
D O I
10.1016/j.ejc.2005.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group (written additively), and let D(G) denote the Davenport's constant of G, i.e. the smallest integer d such that every sequence of d elements (repetition allowed) in G contains a nonempty zero-sum subsequence. Let S be a sequence of elements in G with \S\ >= D(G). We say S is a normal sequence if S contains no zero-sum subsequence of length larger than \S\ - D(G) + 1. In this paper we obtain some results on the structure of normal sequences for arbitrary G. If G = C-n + C-n and n satisfies some well-investigated property, we determine all normal sequences. Applying these results, we obtain correspondingly some results on the structure of the sequence S in G of length \S\ = \G\ + D(G) - 2 and S contains no zero-sum subsequence of length \G\. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:777 / 787
页数:11
相关论文
共 50 条
  • [1] On short zero-sum subsequences of zero-sum sequences
    Fan, Yushuang
    Gao, Weidong
    Wang, Guoqing
    Zhong, Qinghai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [2] On sequences without short zero-sum subsequences
    Zeng, Xiangneng
    Yuan, Pingzhi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04):
  • [3] Long sequences having no two nonempty zero-sum subsequences of distinct lengths
    Gao, Weidong
    Hong, Siao
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    ACTA ARITHMETICA, 2020, 196 (04) : 329 - 347
  • [5] On short zero-sum subsequences
    Gao, WD
    Zhou, J
    ARS COMBINATORIA, 2005, 74 : 231 - 238
  • [6] On the number of zero-sum subsequences
    Cao, Hui-Qin
    Sun, Zhi-Wei
    DISCRETE MATHEMATICS, 2007, 307 (13) : 1687 - 1691
  • [7] Zero-sum subsequences in bounded-sum {-1,1}-sequences
    Caro, Yair
    Hansberg, Adriana
    Montejano, Amanda
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 161 : 387 - 419
  • [8] On zero-sum subsequences of restricted size
    Gao, WD
    JOURNAL OF NUMBER THEORY, 1996, 61 (01) : 97 - 102
  • [9] On zero-sum subsequences of prescribed length
    Han, Dongchun
    Zhang, Hanbin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) : 167 - 191
  • [10] On the number of weighted zero-sum subsequences
    A. Lemos
    B. K. Moriya
    A. O. Moura
    A. T. Silva
    Periodica Mathematica Hungarica, 2023, 87 : 366 - 373