Sequences not containing long zero-sum subsequences

被引:7
|
作者
Gao, WD [1 ]
Zhuang, JJ
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Dalian Univ Technol, Inst Math, Dalian 116024, Peoples R China
关键词
D O I
10.1016/j.ejc.2005.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group (written additively), and let D(G) denote the Davenport's constant of G, i.e. the smallest integer d such that every sequence of d elements (repetition allowed) in G contains a nonempty zero-sum subsequence. Let S be a sequence of elements in G with \S\ >= D(G). We say S is a normal sequence if S contains no zero-sum subsequence of length larger than \S\ - D(G) + 1. In this paper we obtain some results on the structure of normal sequences for arbitrary G. If G = C-n + C-n and n satisfies some well-investigated property, we determine all normal sequences. Applying these results, we obtain correspondingly some results on the structure of the sequence S in G of length \S\ = \G\ + D(G) - 2 and S contains no zero-sum subsequence of length \G\. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:777 / 787
页数:11
相关论文
共 50 条
  • [41] Gao's conjecture on zero-sum sequences
    Sury, B
    Thangadurai, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (03): : 399 - 414
  • [42] On Bialostocki's conjecture for zero-sum sequences
    Guo, Song
    Sun, Zhi-Wei
    ACTA ARITHMETICA, 2009, 140 (04) : 329 - 334
  • [43] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group II
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    JOURNAL OF NUMBER THEORY, 2022, 241 : 738 - 760
  • [44] On zero-sum spanning trees and zero-sum connectivity
    Caro, Yair
    Hansberg, Adriana
    Lauri, Josef
    Zarb, Christina
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01): : 1 - 24
  • [45] On Zero-Sum and Almost Zero-Sum Subgraphs Over
    Caro, Yair
    Yuster, Raphael
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 49 - 63
  • [46] Distinct length modular zero-sum subsequences: A proof of Graham's conjecture
    Gao, Weidong
    Hamidoune, Yahya Ould
    Wang, Guoqing
    JOURNAL OF NUMBER THEORY, 2010, 130 (06) : 1425 - 1431
  • [47] MINIMAL ZERO-SUM SEQUENCES IN FINITE CYCLIC GROUPS
    Zhuang, Jujuan
    Yuan, Pingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (03): : 1007 - 1015
  • [48] A note on minimal zero-sum sequences over Z
    Sissokho, Papa A.
    ACTA ARITHMETICA, 2014, 166 (03) : 279 - 288
  • [49] Minimal zero-sum sequences over [-m, n]
    Zeng, Xiangneng
    Deng, Guixin
    JOURNAL OF NUMBER THEORY, 2019, 203 : 230 - 241
  • [50] THE STRUCTURE OF MINIMAL ZERO-SUM SEQUENCES OF LENGTH FIVE
    Zeng, Xiangneng
    Li, Yuanlin
    ARS COMBINATORIA, 2020, 150 : 41 - 61