Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint

被引:17
|
作者
Guo, Yi [1 ]
Lingala, Sajan Goud [1 ]
Bliesener, Yannick [1 ]
Lebel, R. Marc [2 ]
Zhu, Yinghua [1 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, 3740 McClinitock Ave,EEB 400, Los Angeles, CA 90089 USA
[2] GE Healthcare, Calgary, AB, Canada
基金
美国国家卫生研究院;
关键词
model-based reconstruction; compressed sensing; DCE-MRI; kinetic modeling; BRAIN-BARRIER PERMEABILITY; VASCULAR-PERMEABILITY; MULTIPLE-SCLEROSIS; GD-DTPA; RECONSTRUCTION; GLIOBLASTOMA; SELECTION; TUMORS; TIME; TOOL;
D O I
10.1002/mrm.26904
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop and evaluate a model-based reconstruction framework for joint arterial input function (AIF) and kinetic parameter estimation from undersampled brain tumor dynamic contrast-enhanced MRI (DCE-MRI) data. MethodsThe proposed method poses the tracer-kinetic (TK) model as a model consistency constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital reference object (DRO), and nine retrospectively down-sampled brain tumor DCE-MRI datasets. We also demonstrate application to 30-fold prospectively undersampled brain tumor DCE-MRI. ResultsIn DRO studies with up to 60-fold undersampling, the proposed method provided TK maps with low error that were comparable to fully sampled data and were demonstrated to be compatible with a third-party TK solver. In retrospective undersampling studies, this method provided patient-specific AIF with normalized root mean-squared-error (normalized by the 90th percentile value) less than 8% at up to 100-fold undersampling. In the 30-fold undersampled prospective study, the proposed method provided high-resolution whole-brain TK maps and patient-specific AIF. ConclusionThe proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2804 / 2815
页数:12
相关论文
共 50 条
  • [41] Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements
    Gunnar Brix
    Jürgen Griebel
    Fabian Kiessling
    Frederik Wenz
    European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37 : 30 - 51
  • [42] Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements
    Brix, Gunnar
    Griebel, Juergen
    Kiessling, Fabian
    Wenz, Frederik
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 : S30 - S51
  • [43] Comparison of Model-Based Arterial Input Functions for Dynamic Contrast-Enhanced MRI in Tumor Bearing Rats
    McGrath, Deirdre M.
    Bradley, Daniel P.
    Tessier, Jean L.
    Lacey, Tony
    Taylor, Chris J.
    Parker, Geoffrey J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (05) : 1173 - 1184
  • [44] Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data
    Wang, Ya
    Huang, Wei
    Panicek, David A.
    Schwartz, Lawrence H.
    Koutcher, Jason A.
    MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (05) : 1183 - 1189
  • [45] Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors
    Port, RE
    Knopp, MV
    Brix, G
    MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (06) : 1030 - 1038
  • [46] Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy
    Ziayee, F.
    Mueller-Lutz, A.
    Gross, J.
    Quentin, M.
    Ullrich, T.
    Heusch, P.
    Arsov, C.
    Rabenalt, R.
    Albers, P.
    Antoch, G.
    Wittsack, H. J.
    Schimmoeller, L.
    MAGNETIC RESONANCE IMAGING, 2018, 53 : 28 - 33
  • [47] Effect of parallel radiofrequency transmission on arterial input function selection in dynamic contrast-enhanced 3 Tesla pelvic MRI
    Chafi, Hatim
    Elias, Saba N.
    Nguyen, Huyen T.
    Friel, Harry T.
    Knopp, Michael V.
    Guo, BeiBei
    Heymsfield, Steven B.
    Jia, Guang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 229 - 235
  • [48] Effects of Inflow and Radiofrequency Spoiling on the Arterial Input Function in Dynamic Contrast-Enhanced MRI: A Combined Phantom and Simulation Study
    Garpebring, Anders
    Wirestam, Ronnie
    Ostlund, Nils
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (06) : 1670 - 1679
  • [49] Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function
    Filice, Silvano
    Crisi, Girolamo
    JOURNAL OF NEUROIMAGING, 2016, 26 (01) : 124 - 129
  • [50] Review of tracer kinetic models in evaluation of gliomas using dynamic contrast-enhanced imaging
    Zhou, Jianan
    Hou, Zujun
    Tian, Chuanshuai
    Zhu, Zhengyang
    Ye, Meiping
    Chen, Sixuan
    Yang, Huiquan
    Zhang, Xin
    Zhang, Bing
    FRONTIERS IN ONCOLOGY, 2024, 14