Joint arterial input function and tracer kinetic parameter estimation from undersampled dynamic contrast-enhanced MRI using a model consistency constraint

被引:17
|
作者
Guo, Yi [1 ]
Lingala, Sajan Goud [1 ]
Bliesener, Yannick [1 ]
Lebel, R. Marc [2 ]
Zhu, Yinghua [1 ]
Nayak, Krishna S. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, 3740 McClinitock Ave,EEB 400, Los Angeles, CA 90089 USA
[2] GE Healthcare, Calgary, AB, Canada
基金
美国国家卫生研究院;
关键词
model-based reconstruction; compressed sensing; DCE-MRI; kinetic modeling; BRAIN-BARRIER PERMEABILITY; VASCULAR-PERMEABILITY; MULTIPLE-SCLEROSIS; GD-DTPA; RECONSTRUCTION; GLIOBLASTOMA; SELECTION; TUMORS; TIME; TOOL;
D O I
10.1002/mrm.26904
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop and evaluate a model-based reconstruction framework for joint arterial input function (AIF) and kinetic parameter estimation from undersampled brain tumor dynamic contrast-enhanced MRI (DCE-MRI) data. MethodsThe proposed method poses the tracer-kinetic (TK) model as a model consistency constraint, enabling the flexible inclusion of different TK models and TK solvers, and the joint estimation of the AIF. The proposed method is evaluated using an anatomic realistic digital reference object (DRO), and nine retrospectively down-sampled brain tumor DCE-MRI datasets. We also demonstrate application to 30-fold prospectively undersampled brain tumor DCE-MRI. ResultsIn DRO studies with up to 60-fold undersampling, the proposed method provided TK maps with low error that were comparable to fully sampled data and were demonstrated to be compatible with a third-party TK solver. In retrospective undersampling studies, this method provided patient-specific AIF with normalized root mean-squared-error (normalized by the 90th percentile value) less than 8% at up to 100-fold undersampling. In the 30-fold undersampled prospective study, the proposed method provided high-resolution whole-brain TK maps and patient-specific AIF. ConclusionThe proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2804 / 2815
页数:12
相关论文
共 50 条
  • [31] Dynamic contrast-enhanced CT of head and neck tumors: Perfusion measurements using a distributed-parameter tracer kinetic model
    Bisdas, Sotirios
    Cheong, Dennis L. H.
    Lazakidou, Athina
    Tan, Markus C. K.
    Koh, Tong San
    Vogl, Thomas J.
    Baghi, Mehran
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 569 (02): : 577 - 580
  • [32] Pharmacokinetic modeling of dynamic contrast-enhanced MRI using a reference region and input function tail
    Ahmed, Zaki
    Levesque, Ives R.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 286 - 298
  • [33] Dynamic Contrast-Enhanced MRI in Mice: An Investigation of Model Parameter Uncertainties
    Rukat, Tammo
    Walker-Samuel, Simon
    Reinsberg, Stefan A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (05) : 1979 - 1987
  • [34] Dynamic contrast-enhanced MRI parametric mapping using high spatiotemporal resolution Golden-angle RAdial Sparse Parallel MRI and iterative joint estimation of the arterial input function and pharmacokinetic parameters
    Mazaheri, Yousef
    Kim, Nathanael
    Lakhman, Yulia
    Jafari, Ramin
    Vargas, Alberto
    Otazo, Ricardo
    NMR IN BIOMEDICINE, 2022, 35 (07)
  • [35] Automatic selection of arterial input function on dynamic contrast-enhanced MR images
    Peruzzo, Denis
    Bertoldo, Alessandra
    Zanderigo, Francesca
    Cobelli, Claudio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E148 - E157
  • [36] Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data
    Buonaccorsi, Giovanni A.
    O'Connor, James P. B.
    Caunce, Angela
    Roberts, Caleb
    Cheung, Sue
    Watson, Yvonne
    Davies, Karen
    Hope, Lynn
    Jackson, Alan
    Jayson, Gordon C.
    Parker, Geoffrey J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (05) : 1010 - 1019
  • [37] Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: Fundamental concepts and simulations
    Yang, C
    Karczmar, GS
    Medved, M
    Stadler, WM
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 1110 - 1117
  • [38] Correcting saturation effects of the arterial input function in dynamic susceptibility contrast-enhanced MRI -: a Monte Carlo simulation
    Brunecker, Peter
    Villringer, Arno
    Schultze, Joerg
    Nolte, Christian H.
    Jungehuelsing, Gerhard Jan
    Endres, Matthias
    Steinbrink, Jens
    MAGNETIC RESONANCE IMAGING, 2007, 25 (09) : 1300 - 1311
  • [39] Simple Change Improves the Arterial Input Function in Dynamic Contrast Enhanced MRI
    Haney, Chad R.
    ACADEMIC RADIOLOGY, 2022, 29 (06) : 804 - 805
  • [40] Quantitative Estimation of Renal Function with Dynamic Contrast-Enhanced MRI Using a Modified Two-Compartment Model
    Chen, Bin
    Zhang, Yudong
    Song, Xiaojian
    Wang, Xiaoying
    Zhang, Jue
    Fang, Jing
    PLOS ONE, 2014, 9 (08):